Qucs-core
0.0.18
|
compute complex bessel J function More...
Go to the source code of this file.
Macros | |
#define | SMALL_J0_BOUND 1e6 |
#define | SMALL_JN_BOUND 5.0 |
use ascending serie below this magnitude More... | |
#define | BIG_JN_BOUND 25.0 |
use assymptotic expression above this magnitude More... | |
#define | MAX_SMALL_ITERATION 2048 |
Arbitrary value for iteration. More... | |
#define | MAX_LARGE_ITERATION 430 |
num of P(k) (n = 8) will overlow above this value More... | |
#define | SMALL_J0_BOUND 1e6 |
#define | SMALL_JN_BOUND 5.0 |
#define | BIG_JN_BOUND 25.0 |
#define | MAX_SMALL_ITERATION 2048 |
#define | MAX_LARGE_ITERATION 430 |
Functions | |
static nr_complex_t | cbesselj_smallarg (unsigned int n, nr_complex_t z) |
static nr_complex_t | cbesselj_mediumarg_odd (unsigned int n, nr_complex_t z) |
static nr_complex_t | cbesselj_mediumarg_even (unsigned int n, nr_complex_t z) |
static nr_complex_t | cbesselj_mediumarg (unsigned int n, nr_complex_t z) |
static nr_complex_t | cbesselj_largearg (unsigned int n, nr_complex_t z) |
besselj for large argument More... | |
nr_complex_t | cbesselj (unsigned int n, nr_complex_t z) |
Main entry point for besselj function. More... | |
compute complex bessel J function
Bibligraphy:
[1] Bessel function of the first kind with complex argument Yousif, Hashim A.; Melka, Richard Computer Physics Communications, vol. 106, Issue 3, pp.199-206 11/1997, ELSEVIER, doi://10.1016/S0010-4655(97)00087-8
[2] Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables Milton Abramowitz and Irene A. Stegun public domain (work of US government) online http://www.math.sfu.ca/~cbm/aands/
[3] Mathematica Manual Bessel, Airy, Struve Functions> BesselJ[nu,z] > General characteristics> Symmetries and periodicities http://functions.wolfram.com/BesselAiryStruveFunctions/BesselJ/04/02/01/
[4] Mathematica Manual Bessel, Airy, Struve Functions> BesselJ[nu,z] Representations through equivalent functions http://functions.wolfram.com/BesselAiryStruveFunctions/BesselJ/27/ShowAll.html
[5] Algorithms for the evaluation of Bessel functions of complex argument and integer orders G. D. C. Kuiken Applied Mathematics Letters, Volume 2, Issue 4, 1989, Pages 353-356 doi://10.1016/0893-9659(89)90086-4
Definition in file cbesselj.cpp.
#define BIG_JN_BOUND 25.0 |
use assymptotic expression above this magnitude
Definition at line 82 of file complex.cpp.
#define BIG_JN_BOUND 25.0 |
#define MAX_LARGE_ITERATION 430 |
num of P(k) (n = 8) will overlow above this value
Definition at line 212 of file complex.cpp.
#define MAX_LARGE_ITERATION 430 |
#define MAX_SMALL_ITERATION 2048 |
Arbitrary value for iteration.
Definition at line 85 of file complex.cpp.
#define MAX_SMALL_ITERATION 2048 |
#define SMALL_J0_BOUND 1e6 |
#define SMALL_J0_BOUND 1e6 |
Definition at line 76 of file complex.cpp.
#define SMALL_JN_BOUND 5.0 |
use ascending serie below this magnitude
Definition at line 79 of file complex.cpp.
#define SMALL_JN_BOUND 5.0 |
nr_complex_t qucs::cbesselj | ( | unsigned int | n, |
nr_complex_t | z | ||
) |
Main entry point for besselj function.
Definition at line 286 of file cbesselj.cpp.
|
static |
|
static |
Definition at line 200 of file cbesselj.cpp.
|
static |
Definition at line 172 of file cbesselj.cpp.
|
static |
Definition at line 145 of file cbesselj.cpp.
|
static |
\param[in] n order \param[in] arg arguments
Definition at line 105 of file cbesselj.cpp.