Circulator

A circulator is a 3-port device, transporting incoming waves lossless from port 1 to port 2, from port 2 to port 3 and from port 3 to port 1. In all other directions, there is no energy flow. The ideal circulator cannot be characterized with Z or Y parameters, because their values are partly infinite. But implementing with S parameters is practical (see equation 9.2).

With the reference impedances $ Z_1$, $ Z_2$ and $ Z_3$ for the ports 1, 2 and 3 the scattering matrix of an ideal circulator writes as follows.

$\displaystyle denom = 1-r_1\cdot r_2\cdot r_3$ (9.97)

$\displaystyle r_1 = \frac{Z_0-Z_1}{Z_0+Z_1} \qquad,\qquad r_2 = \frac{Z_0-Z_2}{Z_0+Z_2} \qquad,\qquad r_3 = \frac{Z_0-Z_3}{Z_0+Z_3}$ (9.98)

$\displaystyle S_{11} = \frac{r_2\cdot r_3 - r_1}{denom} \qquad,\qquad S_{22} = ...
...\cdot r_3 - r_2}{denom} \qquad,\qquad S_{33} = \frac{r_1\cdot r_2 - r_3}{denom}$ (9.99)

$\displaystyle S_{12} = \sqrt{\frac{Z_2}{Z_1}}\cdot\frac{Z_1+Z_0}{Z_2+Z_0}\cdot\...
... = \sqrt{\frac{Z_3}{Z_1}}\cdot\frac{Z_1+Z_0}{Z_3+Z_0}\cdot\frac{1-r_1^2}{denom}$ (9.100)

$\displaystyle S_{21} = \sqrt{\frac{Z_1}{Z_2}}\cdot\frac{Z_2+Z_0}{Z_1+Z_0}\cdot\...
...frac{Z_3}{Z_2}}\cdot\frac{Z_2+Z_0}{Z_3+Z_0}\cdot\frac{r_1\cdot(1-r_2^2)}{denom}$ (9.101)

$\displaystyle S_{31} = \sqrt{\frac{Z_1}{Z_3}}\cdot\frac{Z_3+Z_0}{Z_1+Z_0}\cdot\...
... = \sqrt{\frac{Z_2}{Z_3}}\cdot\frac{Z_3+Z_0}{Z_2+Z_0}\cdot\frac{1-r_3^2}{denom}$ (9.102)

An ideal circulator is noise free.


This document was generated by Stefan Jahn on 2007-12-30 using latex2html.