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Chapter 1

Scattering parameters

1.1 Introduction and definition

Voltage and current are hard to measure at high frequencies. Short and open circuits (used
by definitions of most n-port parameters) are hard to realize at high frequencies. Therefore,
microwave engineers work with so-called scattering parameters (S parameters), that uses waves
and matched terminations (normally 50Ω). This procedure also minimizes reflection problems.

A (normalized) wave is defined as ingoing wave a or outgoing wave b:

a =
u+ Z0 · i

2
︸ ︷︷ ︸

Uforward

· 1
√

|ReZ0)|
b =

u− Z∗
0 · i

2
︸ ︷︷ ︸

Ubackward

· 1
√

|ReZ0)|
(1.1)

where u is (effective) voltage, i (effective) current flowing into the device and Z0 reference
impedance. The waves are related to power in the following way.

P =
(
|a|2 − |b|2

)
(1.2)

Sometimes waves are defined with peak voltages and peak currents. The only difference that
appears then is the relation to power:

P =
1

2
·
(
|a|2 − |b|2

)
(1.3)

Now, characterizing an n-port is straight-forward:






b1
...
bn




 =






S11 . . . S1n
...

. . .
...

Sn1 . . . Snn




 ·






a1
...
an




 (1.4)

One final note: The reference impedance Z0 can be arbitrary chosen. It normally is real, and
there is no urgent reason to use a complex one. The definitions in equation 1.1, however, are
made form complex impedances. These ones stem from [1], where they are named ”power waves”.
These power waves are a useful way to define waves with complex reference impedances, but they
differ from the waves introduced in the following chapter. For real reference impedances both
definitions equal each other.
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1.2 Waves on Transmission Lines

This section should derive the existence of the voltage and current waves on a transmission line.
This way, it also proofs that the definitions from the last section make sense.

L'R'

∂z

G' C'

z

Figure 1.1: Infinite short piece of transmission line

Figure 1.1 shows the equivalent circuit of an infinite short piece of an arbitrary transmission line.
The names of the components all carry a single quotation mark which indicates a per-length
quantity. Thus, the units are ohms/m for R′, henry/m for L′, siemens/m for G′ and farad/m
for C′. Writing down the change of voltage and current across a piece with length ∂z results in
the transmission line equations.

∂u

∂z
= −R′ · i(z)− L′ · ∂i

∂t
(1.5)

∂i

∂z
= −G′ ·u(z)− C′ · ∂u

∂t
(1.6)

Transforming these equations into frequency domain leads to:

∂U

∂z
= −I(z) · (R′ + jωL′) (1.7)

∂I

∂z
= −U(z) · (G′ + jωC′) (1.8)

Taking equation 1.8 and setting it into the first derivative of equation 1.7 creates the wave
equation:

∂2U

∂z2
= γ2 ·U (1.9)

with γ2 = (α+ jβ)2 = (R′ + jωL′) · (G′ + jωC′). The complete solution of the wave equation is:

U(z) = U1 · exp(−γ · z)
︸ ︷︷ ︸

Uf (z)

+U2 · exp(γ · z)
︸ ︷︷ ︸

Ub(z)

(1.10)

As can be seen, there is a voltage wave Uf (z) traveling forward (in positive z direction) and
there is a voltage wave Ub(z) traveling backwards (in negative z direction). By setting equation
1.10 into equation 1.7, it becomes clear that the current behaves in the same way:
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I(z) =
γ

R′ + jωL′
︸ ︷︷ ︸

Y L

·
(
Uf (z)− Ub(z)

)
=: If (z) + Ib(z) (1.11)

Note that both current waves are counted positive in positive z direction. In literature, the
backward flowing current wave Ib(z) is sometime counted the otherway around which would
avoid the negative sign within some of the following equations.
Equation 1.11 introduces the characteristic admittance Y L. The propagation constant γ and the
characteristic impedance ZL are the two fundamental properties describing a transmission line.

ZL =
1

Y L

=
Uf

If
= −Ub

Ib
=

√

R′ + jωL′

G′ + jωC′ ≈
√

L′

C′ (1.12)

Note that ZL is a real value if the line loss (due to R′ and G′) is small. This is often the case
in reality. A further very important quantity is the reflexion coefficient r which is defined as
follows:

r =
U b

Uf

= − Ib
If

=
Ze − ZL

Ze + ZL

(1.13)

The equation shows that a part of the voltage and current wave is reflected back if the end of a
transmission line is not terminated by an impedance that equals ZL. The same effect occurs in
the middle of a transmission line, if its characteristic impedance changes.

U = Uf + U b I = If + Ib

Uf = 1
2 · (U + I ·ZL) If = 1

2 · (U/ZL + I)

Ub =
1
2 · (U − I ·ZL) Ib =

1
2 · (I − U/ZL)

1.3 Computing with S-parameters

1.3.1 S-parameters in CAE programs

The most common task of a simulation program is to compute the S parameters of an arbitrary
network that consists of many elementary components connected to each other. To perform this,
one can build a large matrix containing the S parameters of all components and then use matrix
operations to solve it. However this method needs heavy algorithms. A more elegant possibility
was published in [2]. Each step computes only one connection and so unites two connected
components to a single S parameter block. This procedure has to be done with every connection
until there is only one block left whose S parameters therefore are the simulation result.

Connecting port k of circuit (S) with port l of circuit (T ), the new S-parameters are

S′
ij = Sij +

Skj ·T ll ·Sik

1− Skk ·T ll

(1.14)

with i and j both being ports of (S). Furthermore, it is

S′
mj =

Skj ·Tml

1− Skk ·T ll

(1.15)
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with m being a port of the circuit (T ). If two ports of the same circuit (S) are connected, the
new S-parameters are

S′
ij = Sij +

Skj ·Sil · (1− Slk) + Slj ·Sik · (1 − Skl) + Skj ·Sll ·Sik + Slj ·Skk ·Sil

(1− Skl) · (1 − Slk)− Skk ·Sll

. (1.16)

If more than two ports are connected at a node, one have to insert one or more ideal tee
components. Its S-parameters write as follows.

(
S
)
=

1

3
·





−1 2 2
2 −1 2
2 2 −1



 (1.17)

For optimisation reasons it may be desirable to insert a cross if at least four components are
connected at one node. Its S-parameters write as follows.

(
S
)
=

1

2
·







−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1







(1.18)

The formulas (1.14), (1.15) and (1.16) were obtained using the “nontouching-loop” rule being an
analytical method for solving a flow graph. A few basic definitions have to be understood.

A “path” is a series of branches into the same direction with no node touched more than once.
A paths value is the product of the coefficients of the branches. A “loop” is formed when a path
starts and finishes at the same node. A “first-order” loop is a path coming to closure with no
node passed more than once. Its value is the product of the values of all branches encountered
on the route. A “second-order” loop consists of two first-order loops not touching each other at
any node. Its value is calculated as the product of the values of the two first-order loops. Third-
and higher-order loops are three or more first-order loops not touching each other at any node.

The nontouching-loop rule can be applied to solve any flow graph. In the following equation in
symbolic form T represents the ratio of the dependent variable in question and the independent
variable.

T =

P1 ·
(

1− ΣL
(1)
1 +ΣL

(1)
2 − ΣL

(1)
3 + . . .

)

+ P2 ·
(

1− ΣL
(2)
1 +ΣL

(2)
2 − ΣL

(2)
3 + . . .

)

+P3 ·
(

1− ΣL
(3)
1 +ΣL

(3)
2 − ΣL

(3)
3 + . . .

)

+ P4 · (1− . . .) + . . .

1− ΣL1 +ΣL2 − ΣL3 + . . .
(1.19)

In eq. (1.19) ΣL1 stands for the sum of all first-order loops, ΣL2 is the sum of all second-order
loops, and so on. P1, P2, P3 etc., stand for the values of all paths that can be found from the

independent variable to the dependent variable. ΣL
(1)
1 denotes the sum of those first-order loops

which do not touch (hence the name) the path of P1 at any node, ΣL
(1)
2 denotes then the sum

of those second-order loops which do not touch the path P1 at any point, ΣL
(2)
1 consequently

denotes the sum of those first-order loops which do not touch the path of P2 at any point. Each
path is multiplied by the factor in parentheses which involves all the loops of all orders that the
path does not touch.
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When connecting two different networks the signal flow graph in fig. 1.2 is used to compute the
new S-parameters. With equally reference impedances on port k and port l the relations ak = bl
and al = bk are satisfied.

j

aj

bm

s tkj ml

sij skk t ll

sik

S(   )
lk

bi

T(   )

bm

bi b a=l k

bk al=a

Figure 1.2: signal flow graph of a joint between ports k and l on different networks

There is only one first-order loop (see fig. 1.3) within this signal flow graph. This loops value
yields to

L11 = Skk ·T ll (1.20)

j

ij skk t ll

sik

s tkj ml

bm

bi b a=l k

bk al=a

s

Figure 1.3: loops in the signal flow graph when connecting ports k and l on different networks

The paths that can be found from the independent variable aj to the dependent variable bi (as
depicted in fig. 1.4) can be written as

P1 = Skj ·T ll ·Sik (1.21)

P2 = Sij (1.22)

j

ij skk t ll

sik

s tkj ml

bm

bi b a=l k

bk al=aj

sij skk t ll

sik

s tkj ml

bm

bi b a=l k

bk al=aj

sij skk t ll

sik

s tkj ml

bm

bi b a=l k

bk al=a

s

Figure 1.4: paths in the signal flow graph when connecting ports k and l on different networks
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Applying the nontouching-loop rule, i.e. eq. (1.19), gives the new S-parameter S′
ij

S′
ij =

bi
aj

=
P1 · (1− L11) + P2 · 1

1− L11

=
Sij · (1− Skk ·T ll) + Skj ·T ll ·Sik

1− Skk ·T ll

= Sij +
Skj ·T ll ·Sik

1− Skk ·T ll

(1.23)

The only path that can be found from the independent variable aj to the dependent variable bm
(as depicted in fig. 1.4) can be written as

P1 = Skj ·Tml (1.24)

Thus the new S-parameter S′
mj yields to

S′
mj =

bm
aj

=
P1 · 1

1− L11
=

Skj ·Tml

1− Skk ·T ll

(1.25)

When connecting the same network the signal flow graph in fig. 1.5 is used to compute the new
S-parameters. With equally reference impedances on port k and port l the relations ak = bl and
al = bk are satisfied.

k
aj

sij skk

bk al=

b a=l k

skj

sikbi

l

bi

aj

lls

s

s

s

slj

il

kl

lk

S(   )

Figure 1.5: signal flow graph of a joint between ports k and l on the same network

There are three first-order loops and a second-order loop (see fig. 1.6) within this signal flow
graph. These loops’ values yield to

L11 = Skk ·Sll (1.26)

L12 = Skl (1.27)

L13 = Slk (1.28)

L21 = L12 ·L13 = Skl ·Slk (1.29)
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lk

ij skk

bk al=

b a=l k

skj

sik

sij skk

bk al=

b a=l k

skj

sik

sij skk

bk al=

b a=l k

skj

sik

aj

lls

s

s

s

slj

il

kl

s

bi

aj

lls

s

s

s

slj

il

kl

lk bi

aj

lls

s

s

s

slj

il

kl

lk bi

Figure 1.6: loops in the signal flow graph when connecting ports k and l on the same network

There are five different paths that can be found from the independent variable aj to the dependent
variable bi (as depicted in fig. 1.7) which can be written as

P1 = Skj ·Sll ·Sik (1.30)

P2 = Skj ·Sil (1.31)

P3 = Slj ·Sik (1.32)

P4 = Sij (1.33)

P5 = Slj ·Skk ·Sil (1.34)

lk

ij skk

bk al=

b a=l k

skj

sik

bi

aj

lls

s

s

s

slj

il

kl

s

bi

aj

lls

s

s

s

slj

il

kl

lk

sij skk

bk al=

b a=l k

skj

sikbi

aj

lls

s

s

s

slj

il

kl

lk

sij skk

bk al=

b a=l k

skj

sikbi

aj

lls

s

s

s

slj

il

kl

lk

sij skk

bk al=

skj

sik

b a=l k

bi

aj

lls

s

s

s

slj

il

kl

lk

sij skk

bk al=

b a=l k

skj

sik

Figure 1.7: paths in the signal flow graph when connecting ports k and l on the same network
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Thus the new S-parameter S′
ij yields to

S′
ij =

P1 + P2 · (1− L13) + P3 · (1− L12) + P4 · (1− (L11 + L12 + L13) + L21) + P5

1− (L11 + L12 + L13) + L21

= P4 +
P1 + P2 · (1− L13) + P3 · (1− L12) + P5

1− (L11 + L12 + L13) + L21

= Sij +
Skj ·Sll ·Sik + Skj ·Sil · (1− Slk) + Slj ·Sik · (1− Skl) + Slj ·Skk ·Sil

1− (Skk ·Sll + Skl + Slk) + Skl ·Slk

= Sij +
Skj ·Sll ·Sik + Skj ·Sil · (1− Slk) + Slj ·Sik · (1− Skl) + Slj ·Skk ·Sil

(1− Skl) · (1− Slk)− Skk ·Sll

(1.35)

This short introduction to signal flow graphs and their solution using the nontouching-loop rule
verifies the initial formulas used to compute the new S-parameters for the reduced subnetworks.

1.3.2 Differential S-parameter ports

The implemented algorithm for the S-parameter analysis calculates S-parameters in terms of the
ground node. In order to allow differential S-parameters as well it is necessary to insert an ideal
impedance transformer with a turns ratio of 1:1 between the differential port and the device
under test.

1

DUT

1

2

DUT

1

2

DUT

1

2

(S)
2

3

T=1

Figure 1.8: transformation of differential port into single ended port

The S-parameter matrix of the inserted ideal transformer being a three port device can be written
as follows.

(
S
)
=

1

3
·





1 2 −2
2 1 2
−2 2 1



 (1.36)
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This transformation can be applied to each S-parameter port in a circuit regardless whether it
is actually differential or not.

It is also possible to do the impedance transformation within this step (for S-parameter ports
with impedances different than 50Ω). This can be done by using a transformer with an impedance
ration of

r = T 2 =
50Ω

Z
(1.37)

With Z being the S-parameter port impedance. The S-parameter matrix of the inserted ideal
transformer now writes as follows.

(
S
)
=

1

2 ·Z0 + Z
·





2 ·Z0 − Z 2 ·
√
Z0 ·Z −2 ·

√
Z0 ·Z

2 ·
√
Z0 ·Z Z 2 ·Z0

−2 ·
√
Z0 ·Z 2 ·Z0 Z



 (1.38)

With Z being the new S-parameter port impedance and Z0 being 50Ω.

1.4 Applications

1.4.1 Stability

A very important task in microwave design (especially for amplifiers) is the question, whether
the circuit tends to unwanted oscillations. A two-port oscillates if, despite of no signal being fed
into it, AC power issues from at least one of its ports. This condition can be easily expressed in
terms of RF quantities, so a circuit is stable if:

|r1| < 1 and |r2| < 1 (1.39)

with r1 being reflexion coefficient of port 1 and r2 the one of port 2.

A further question can be asked: What conditions must be fulfilled to have a two-port be stable
for all combinations of passive impedance terminations at port 1 and port 2? Such a circuit is
called unconditionally stable. [3] is one of the best discussions dealing with this subject.

A circuit is unconditionally stable if the following two relations hold:

K =
1− |S11|2 − |S22|2 + |∆|2

2 · |S12 ·S21|
> 1 (1.40)

|∆| = |S11 ·S22 − S12 ·S21| < 1 (1.41)

with ∆ being the determinant of the S parameter matrix of the two port. K is called Rollet
stability factor. Two relations must be fulfilled to have a necessary and sufficient criterion.

A more practical criterion (necessary and sufficient) for unconditional stability is obtained with
the µ-factor:

µ =
1− |S11|2

|S22 − S∗
11 ·∆|+ |S12 ·S21|

> 1 (1.42)
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Because of symmetry reasons, a second stability factor must exist that also gives a necessary and
sufficient criterion for unconditional stability:

µ′ =
1− |S22|2

|S11 − S∗
22 ·∆|+ |S12 ·S21|

> 1 (1.43)

For conditional stable two-ports it is interesting which which load and which source impedance
may cause instability. This can be seen using stability circles [4]. A disadvantage of this method
is that the radius of the below-mentioned circles can become infinity. (A circle with infinite
radius is a line.)

Within the reflexion coefficient plane of the load (rL-plane), the stability circle is:

rcenter =
S∗
22 − S11 ·∆∗

|S22|2 − |∆|2
(1.44)

Radius =
|S12| · |S21|
|S22|2 − |∆|2

(1.45)

If the center of the rL-plane lies within this circle and |S11| ≤ 1 then the circuit is stable for
all reflexion coefficients inside the circle. If the center of the rL-plane lies outside the circle and
|S11| ≤ 1 then the circuit is stable for all reflexion coefficients outside the circle.

Very similar is the situation for reflexion coefficients in the source plane (rS-plane). The stability
circle is:

rcenter =
S∗
11 − S22 ·∆∗

|S11|2 − |∆|2
(1.46)

Radius =
|S12| · |S21|
|S11|2 − |∆|2

(1.47)

If the center of the rS-plane lies within this circle and |S22| ≤ 1 then the circuit is stable for
all reflexion coefficients inside the circle. If the center of the rS-plane lies outside the circle and
|S22| ≤ 1 then the circuit is stable for all reflexion coefficients outside the circle.

1.4.2 Gain

Maximum available and stable power gain (only for unconditional stable 2-ports) [4]:

Gmax =

∣
∣
∣
∣

S21

S12

∣
∣
∣
∣
·
(

K −
√

K2 − 1
)

(1.48)

where K is Rollet stability factor.

The (bilateral) transmission power gain of a two-port can be split into three parts [4]:

G = GS ·G0 ·GL (1.49)

with

GS =
(1− |rS |2) · (1− |r1|2)

|1− rS · r1|2
(1.50)

G0 = |S21|2 (1.51)
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GL =
1− |rL|2

|1− rL ·S22|2 · (1 − |r1|2)
(1.52)

where r1 is reflexion coefficient of the two-port input.

The curves of constant gain are circles in the reflexion coefficient plane. The circle for the
load-mismatched two-port with gain GL is

rcenter =
(S∗

22 − S11 ·∆∗) ·GL

GL · (|S22|2 − |∆|2) + 1
(1.53)

Radius =

√

1−GL · (1− |S11|2 − |S22|2 + |∆|2) +G2
L · |S12 ·S21|2

GL · (|S22|2 − |∆|2) + 1
(1.54)

The circle for the source-mismatched two-port with gain GS is

rcenter =
GS · r∗1

1− |r1|2 · (1−GS)
(1.55)

Radius =

√
1−GS · (1 − |r1|2)
1− |r1|2 · (1 −GS)

(1.56)

with

r1 = S11 +
S12 ·S21 · rL
1− rL ·S22

(1.57)

The available power gain GA of a two-port is reached when the load is conjugately matched to
the output port. It is:

GA =
|S21|2 · (1− |rS |2)

|1− S11 · rS |2 − |S22 −∆ · rS |2
(1.58)

with ∆ = S11S22 − S12S21. The curves with constant gain GA are circles in the source reflexion
coefficient plane (rS-plane). The center rS,c and the radius RS are:

rS,c =
gA ·C∗

1

1 + gA · (|S11|2 − |∆|2)
(1.59)

RS =

√

1− 2 ·K · gA · |S12S21|+ g2A · |S12S21|2
|1 + gA · (|S11|2 − |∆|2)|

(1.60)

with C1 = S11 − S∗
22 ·∆, gA = GA/|S21|2 and K Rollet stability factor.

The operating power gain GP of a two-port is the power delivered to the load divided by the
input power of the amplifier. It is:

GP =
|S21|2 · (1− |rL|2)

|1− S22 · rL|2 − |S11 −∆ · rL|2
(1.61)

with ∆ = S11S22 − S12S21. The curves with constant gain GP are circles in the load reflexion
coefficient plane (rL-plane). The center rL,c and the radius RL are:

rL,c =
gP ·C∗

2

1 + gP · (|S22|2 − |∆|2)
(1.62)

RL =

√

1− 2 ·K · gP · |S12S21|+ g2P · |S12S21|2
|1 + gP · (|S22|2 − |∆|2)|

(1.63)

with C2 = S22 − S∗
11 ·∆, gP = GP /|S21|2 and K Rollet stability factor.
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1.4.3 Two-Port Matching

Obtaining concurrent power matching of input and output in a bilateral circuit is not such simple,
due to the backward transmission S12. However, in linear circuits, this task can be easily solved
by the following equations:

∆ = S11 ·S22 − S12 ·S21 (1.64)

B = 1 + |S11|2 − |S22|2 − |∆|2 (1.65)

C = S11 − S∗
22 ·∆ (1.66)

rS =
1

2 ·C ·
(

B −
√

B2 − |2 ·C|2
)

(1.67)

Here rS is the reflexion coefficient that the circuit needs to see at the input port in order to reach
concurrently matched in- and output. For the reflexion coefficient at the output rL the same
equations hold by simply changing the indices (exchange 1 by 2 and vice versa).
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Chapter 2

Noise Waves

2.1 Definition

In microwave circuits described by scattering parameters, it is advantageous to regard noise as
noise waves [5]. The noise characteristics of an n-port is then defined completely by one outgoing
noise wave bnoise,n at each port (see 2-port example in fig. 2.1) and the correlation between
these noise sources. Therefore, mathematically, you can characterize a noisy n-port by its n× n
scattering matrix (S) and its n× n noise wave correlation matrix (C).

(C) =









bnoise,1 · b∗noise,1 bnoise,1 · b∗noise,2 . . . bnoise,1 · b∗noise,n
bnoise,2 · b∗noise,1 bnoise,2 · b∗noise,2 . . . bnoise,2 · b∗noise,n

...
...

. . .
...

bnoise,n · b∗noise,1 bnoise,n · b∗noise,2 . . . bnoise,n · b∗noise,n









=








c11 c12 . . . c1n
c21 c22 . . . c2n
...

...
. . .

...
cn1 cn2 . . . cnn








(2.1)

Where x is the time average of x and x∗ is the conjugate complex of x. Noise correlation matrices
are hermitian matrices because the following equations hold.

Im (cnn) = Im
(

|bnoise,n|2
)

= 0 (2.2)

cnm = c∗mn (2.3)

Where Im(x) is the imaginary part of x and |x| is the magnitude of x.
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Figure 2.1: signal flow graph of a noisy 2-port

2.2 Noise Parameters

Having the noise wave correlation matrix, one can easily compute the noise parameters [5]. The
following equations calculate them with regard to port 1 (input) and port 2 (output). (If one
uses an n-port and want to calculate the noise parameters regarding to other ports, one has to
replace the index numbers of S- and c-parameters accordingly. I.e. replace ”1” with the number
of the input port and ”2” with the number of the output port.)

Noise figure:

F = 1 +
c22

k ·T0 · |S21|2
(2.4)

NF [dB] = 10 · lgF (2.5)

Optimal source reflection coefficient (normalized according to the input port impedance):

Γopt = η2 ·
(

1−
√

1− 1

|η2|2

)

(2.6)

With
η1 = c11 · |S21|2 − 2 ·Re (c12 ·S21 ·S∗

11) + c22 · |S11|2 (2.7)

η2 =
1

2
· c22 + η1
c22 ·S11 − c12 ·S21

(2.8)

Minimum noise figure:

Fmin = 1 +
c22 − η1 · |Γopt|2

k ·T0 · |S21|2 · (1 + |Γopt|2)
(2.9)

NFmin = 10 · lgFmin (2.10)

Equivalent noise resistance:

Rn =
Zport,in

4 · k ·T0
·
(

c11 − 2 ·Re
(

c12 ·
(
1 + S11

S21

)∗)

+ c22 ·
∣
∣
∣
∣

1 + S11

S21

∣
∣
∣
∣

2
)

(2.11)
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With Zport,in internal impedance of input port
Boltzmann constant k = 1.380658 ·10−23 J/K
standard temperature T0 = 290K

Calculating the noise wave correlation coefficients from the noise parameters is straightforward
as well.

c11 = k ·Tmin · (|S11|2 − 1) +Kx · |1− S11 ·Γopt|2 (2.12)

c22 = |S21|2 ·
(
k ·Tmin +Kx · |Γopt|2

)
(2.13)

c12 = c∗21 = −S∗
21 ·Γ∗

opt ·Kx +
S11

S21
· c22 (2.14)

with

Kx =
4 · k ·T0 ·Rn

Z0 · |1 + Γopt|2
(2.15)

Once having the noise parameters, one can calculate the noise figure for every source admittance
YS = GS + j ·Bs, source impedance ZS = RS + j ·Xs, or source reflection coefficient rS .

F =
SNRin

SNRout
=

Tequi

T0
+ 1 (2.16)

= Fmin +
Gn

RS
·
(
(RS −Ropt)

2 + (XS −Xopt)
2
)

(2.17)

= Fmin +
Gn

RS
·
∣
∣ZS − Zopt

∣
∣
2

(2.18)

= Fmin +
Rn

GS
·
(
(GS −Gopt)

2 + (BS −Bopt)
2
)

(2.19)

= Fmin +
Rn

GS
·
∣
∣Y S − Y opt

∣
∣
2

(2.20)

= Fmin + 4 · Rn

Z0
·

∣
∣Γopt − rS

∣
∣
2

(1− |rS |2) ·
∣
∣1 + Γopt

∣
∣
2 (2.21)

Where SNRin and SNRout are the signal to noise ratios at the input and output, respectively,
Tequi is the equivalent (input) noise temperature. Note that Gn does not equal 1/Rn.

All curves with constant noise figures are circles (in all planes, i.e. impedance, admittance and
reflection coefficient). A circle in the reflection coefficient plane has the following parameters.

center point:

rcenter =
Γopt

1 +N
(2.22)

radius:

R =

√
N2 +N · (1− |Γopt|2)

1 +N
(2.23)

with

N =
Z0

4 ·Rn
· (F − Fmin) · |1 + Γopt|2 (2.24)
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2.3 Noise Wave Correlation Matrix in CAE

Due to the similar concept of S parameters and noise correlation coefficients, the CAE noise
analysis can be performed quite alike the S parameter analysis (section 1.3.1). As each step uses
the S parameters to calculate the noise correlation matrix, the noise analysis is best done step
by step in parallel with the S parameter analysis. Performing each step is as follows: We have
the noise wave correlation matrices ( (C), (D) ) and the S parameter matrices ( (S), (T ) ) of two
arbitrary circuits and want to know the correlation matrix of the special circuit resulting from
connecting two circuits at one port.

(S’)

(C)
(S)i k

a

b

b

a

ii

S’

S’
S’

S’jj

ji

ij

noise,i

noise,j
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b’

i

i j

j

T

T

T

jl

lj

ll

b

a
S

S

ki

ik

SkkSii

noise,i

noise,k

noise,l

noise,j

b

b

b

b

i

i
a

b

Tjj

j

j

j(T)
(D)

l

i j

(C’)

Figure 2.2: connecting two noisy circuits, scheme (left) and signal flow graph (right)

An example is shown in fig. 2.2. What we have to do is to transform the inner noise waves
bnoise,k and bnoise,l to the open ports. Let us look upon the example. According to the signal

flow graph the resulting noise wave b′noise,i writes as follows:

b′noise,i = bnoise,i + bnoise,k ·
T ll ·Sik

1− Skk ·T ll

+ bnoise,l ·
Sik

1− Skk ·T ll

(2.25)

The noise wave bnoise,j does not contribute to b
′
noise,i, because no path leads to port i. Calculating

b′noise,j is quite alike:

b′noise,j = bnoise,j + bnoise,l ·
T jl ·Skk

1− Skk ·T ll

+ bnoise,k ·
T jl

1− Skk ·T ll

(2.26)
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Now we can derive the first element of the new noise correlation matrix by multiplying eq. (2.25)
with eq. (2.26).

c′ij = b′noise,i · b′∗noise,j
= bnoise,i · b∗noise,j

+ bnoise,i · b∗noise,l ·
(

T jl ·Skk

1− Skk ·T ll

)∗
+ bnoise,i · b∗noise,k ·

(
T jl

1− Skk ·T ll

)∗

+ bnoise,k · b∗noise,j ·
T ll ·Sik

1− Skk ·T ll

+ bnoise,k · b∗noise,l ·
T ll ·Sik ·T ∗

jl ·S∗
kk

|1− Skk ·T ll|2
+ bnoise,k · b∗noise,k ·

T ll ·Sik ·T ∗
jl

|1− Skk ·T ll|2

+ bnoise,l · b∗noise,j ·
Sik

1− Skk ·T ll

+ bnoise,l · b∗noise,l ·
Sik ·T ∗

jl ·S∗
kk

|1− Skk ·T ll|2
+ bnoise,l · b∗noise,k ·

Sik ·T ∗
jl

|1− Skk ·T ll|2

(2.27)

The noise waves of different circuits are uncorrelated and therefore their time average product
equals zero (e.g. bnoise,i · b∗noise,j = 0). Thus, the final result is:

c′ij = (c′ji)
∗ = (ckk ·T ll + dll ·S∗

kk) ·
Sik ·T ∗

jl

|1− Skk ·T ll|2

+ cik ·
(

T jl

1− Skk ·T ll

)∗
+ dlj ·

Sik

1− Skk ·T ll

(2.28)

All other cases of connecting circuits can be calculated the same way using the signal flow graph.
The results are listed below.

If index i and j are within the same circuit, it results in fig. 2.3. The following formula holds:

c′ij = (c′ji)
∗ = cij + (ckk · |T ll|2 + dll) ·

Sik ·S∗
jk

|1− Skk ·T ll|2

+ cik ·
(

T ll ·Sjk

1− Skk ·T ll

)∗
+ ckj ·

T ll ·Sik

1− Skk ·T ll

(2.29)

This equation is also valid, if i equals j.

i (   )
(   )

(   )
(   )

T
D

S
C

k l

j

Figure 2.3: connecting two noisy circuits

23



If the connected ports k and l are from the same circuit, the following equations must be applied
(see also fig. 2.4) to obtain the new correlation matrix coefficients.

M = (1− Skl) · (1− Slk)− Skk ·Sll (2.30)

K1 =
Sil · (1− Slk) + Sll ·Sik

M
(2.31)

K2 =
Sik · (1− Skl) + Skk ·Sil

M
(2.32)

K3 =
Sjl · (1− Slk) + Sll ·Sjk

M
(2.33)

K4 =
Sjk · (1− Skl) + Skk ·Sjl

M
(2.34)

c′ij = cij + ckj ·K1 + clj ·K2 +K∗
3 · (cik + ckk ·K1 + clk ·K2)+

K∗
4 · (cil + ckl ·K1 + cll ·K2)

(2.35)

These equations are also valid if i equals j.

l

k

j

(S)
(C)

i

Figure 2.4: connection within a noisy circuits

The absolute values of the noise correlation coefficients are very small. To achieve a higher
numerical precision, it is recommended to normalize the noise matrix with k ·T0. After the
simulation they do not have to be denormalized, because the noise parameters can be calculated
by using equation (2.4) to (2.11) and omitting all occurrences of k ·T0.

The transformer concept to deal with different port impedances and with differential ports (as
described in section 1.3.2) can also be applied to this noise analysis.

2.4 Noise Correlation Matrix Transformations

The noise wave correlation matrix of a passive linear circuit generating thermal noise can simply
be calculated using Bosma’s theorem. The noise wave correlation matrices of active devices can
be determined by forming the noise current correlation matrix and then transforming it to the
equivalent noise wave correlation matrix.
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The noise current correlation matrix (also called the admittance representation) CY is an n× n
matrix.

CY =








i1 · i∗1 i1 · i∗2 . . . i1 · i∗n
i2 · i∗1 i2 · i∗2 . . . i2 · i∗n
...

...
. . .

...

in · i∗1 in · i∗2 . . . in · i∗n








=








c11 c12 . . . c1n
c21 c22 . . . c2n
...

...
. . .

...
cn1 cn2 . . . cnn








(2.36)

This definition is very likely the one made by eq. (2.1). The matrix has the same properties as
well. Because in most transistor models the noise behaviour is expressed as the sum of effects of
noise current sources it is easier to form this matrix representation.

2.4.1 Forming the noise current correlation matrix

Each element in the diagonal matrix is equal to the sum of the noise current of each element
connected to the corresponding node. So the first diagonal element is the sum of noise currents
connected to node 1, the second diagonal element is the sum of noise currents connected to node
2, and so on.

The off diagonal elements are the negative noise current of the element connected to the pair
of corresponding node. Therefore a noise current source between nodes 1 and 2 goes into the
matrix at location (1,2) and locations (2,1).

If a noise current source is grounded, it will only have contribute to one entry in the noise
correlation matrix – at the appropriate location on the diagonal. If it is ungrounded it will
contribute to four entries in the matrix – two diagonal entries (corresponding to the two nodes)
and two off-diagonal entries.

R2
R=10 Ohm

R1
R=50 Ohm

P2P1

I2
i=1e-6

I1
i=1e-6

C1
C=1 pF

Figure 2.5: example circuit applied to noise analysis

Once having defined the spectral noise current densities of the noise currents within a transistor
model the above rules for forming the CY matrix can be applied to the example circuit depicted
in fig. 2.5. The noise current correlation matrix is accordingly

CY =

[

+i21 −i21
−i21 i21 + i22

]

(2.37)
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2.4.2 Transformations

There are three usable noise correlation matrix representations for multiport circuits.

• admittance representation CY - based on noise currents

• impedance representation CZ - based on noise voltages

• wave representation CS - based on noise waves

According to Scott W. Wedge and David B. Rutledge [5] the transformations between these
representations write as follows.

CY CZ CS

CY CY Y ·CZ ·Y + (E + Y ) ·CS · (E + Y )
+

CZ Z ·CY ·Z+ CZ (E + Z) ·CS · (E + Z)+

CS

1

4
(E + S) ·CY · (E + S)

+ 1

4
(E − S) ·CZ · (E − S)

+
CS

The signal as well as correlation matrices in impedance and admittance representations are
assumed to be normalized in the above table. E denotes the identity matrix and the + operator
indicates the transposed conjugate matrix (also called adjoint or adjugate).

Each noise correlation matrix transformation requires the appropriate signal matrix representa-
tion which can be obtained using the formulas given in section 15.1 on page 211.

2.5 Noise Wave Correlation Matrix of Components

Many components do not produce any noise. Every element of their noise correlation matrix
therefore equals exactly zero. Examples are lossless, passive components, i.e. capacitors, in-
ductors, transformers, circulators, phase shifters. Furthermore ideal voltage and current sources
(without internal resistance) as well as gyrators also do not produce any noise.

If one wants to calculate the noise wave correlation matrix of a component, the most universal
method is to take noise voltages and noise currents and then derive the noise waves by the use
of equation (1.1). However, this can be very difficult.

A passive, linear circuit produces only thermal noise and thus its noise waves can be calculated
with Bosma’s theorem (assuming thermodynamic equilibrium).

(C) = k ·T ·
(
(E)− (S) · (S)∗T

)
(2.38)

with (S) being the S parameter matrix and (E) identity matrix. Of course, this theorem can
also be written with impedance and admittance representation of the noise correlation matrix:

CZ = 4 · k ·T ·Re(Z) (2.39)

CY = 4 · k ·T ·Re(Y ) (2.40)
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Chapter 3

DC Analysis

3.1 Modified Nodal Analysis

Many different kinds of network element are encountered in network analysis. For circuit analysis
it is necessary to formulate equations for circuits containing as many different types of network
elements as possible. There are various methods for equation formulation for a circuit. These
are based on three types of equations found in circuit theory:

• equations based on Kirchhoff’s voltage law (KVL)

• equations based on Kirchhoff’s current law (KCL)

• branch constitutive equations

The equations have to be formulated (represented in a computer program) automatically in a
simple, comprehensive manner. Once formulated, the system of equations has to be solved. There
are two main aspects to be considered when choosing algorithms for this purpose: accuracy and
speed. The MNA, briefly for Modified Nodal Analysis, has been proved to accomplish these
tasks.
MNA applied to a circuit with passive elements, independent current and voltage sources and
active elements results in a matrix equation of the form:

[A] · [x] = [z] (3.1)

For a circuit with N nodes and M independent voltage sources:

• The A matrix

– is (N+M)×(N+M) in size, and consists only of known quantities

– the N×N part of the matrix in the upper left:

∗ has only passive elements

∗ elements connected to ground appear only on the diagonal

∗ elements not connected to ground are both on the diagonal and off-diagonal terms

– the rest of the A matrix (not included in the N×N upper left part) contains only 1, -1
and 0 (other values are possible if there are dependent current and voltage sources)

• The x matrix
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– is an (N+M)×1 vector that holds the unknown quantities (node voltages and the
currents through the independent voltage sources)

– the top N elements are the n node voltages

– the bottom M elements represent the currents through the M independent voltage
sources in the circuit

• The z matrix

– is an (N+M)×1 vector that holds only known quantities

– the top N elements are either zero or the sum and difference of independent current
sources in the circuit

– the bottom M elements represent the M independent voltage sources in the circuit

The circuit is solved by a simple matrix manipulation:

[x] = [A]
−1 · [z] (3.2)

Though this may be difficult by hand, it is straightforward and so is easily done by computer.

3.1.1 Generating the MNA matrices

The following section is an algorithmic approach to the concept of the Modified Nodal Analysis.
There are three matrices we need to generate, the A matrix, the x matrix and the z matrix. Each
of these will be created by combining several individual sub-matrices.

3.1.2 The A matrix

The A matrix will be developed as the combination of 4 smaller matrices, G, B, C, and D.

A =

[
G B
C D

]

(3.3)

The A matrix is (M+N)×(M+N) (N is the number of nodes, and M is the number of independent
voltage sources) and:

• the G matrix is N×N and is determined by the interconnections between the circuit elements

• the B matrix is N×M and is determined by the connection of the voltage sources

• the C matrix is M×N and is determined by the connection of the voltage sources (B and
C are closely related, particularly when only independent sources are considered)

• the D matrix is M×M and is zero if only independent sources are considered

Rules for making the G matrix

The G matrix is an N×N matrix formed in two steps.

1. Each element in the diagonal matrix is equal to the sum of the conductance (one over
the resistance) of each element connected to the corresponding node. So the first diagonal
element is the sum of conductances connected to node 1, the second diagonal element is
the sum of conductances connected to node 2, and so on.
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2. The off diagonal elements are the negative conductance of the element connected to the
pair of corresponding node. Therefore a resistor between nodes 1 and 2 goes into the G
matrix at location (1,2) and locations (2,1).

If an element is grounded, it will only have contribute to one entry in the G matrix – at the
appropriate location on the diagonal. If it is ungrounded it will contribute to four entries in the
matrix – two diagonal entries (corresponding to the two nodes) and two off-diagonal entries.

Rules for making the B matrix

The B matrix is an N×M matrix with only 0, 1 and -1 elements. Each location in the matrix
corresponds to a particular voltage source (first dimension) or a node (second dimension). If the
positive terminal of the ith voltage source is connected to node k, then the element (k,i) in the
B matrix is a 1. If the negative terminal of the ith voltage source is connected to node k, then
the element (k,i) in the B matrix is a -1. Otherwise, elements of the B matrix are zero.

If a voltage source is ungrounded, it will have two elements in the B matrix (a 1 and a -1 in the
same column). If it is grounded it will only have one element in the matrix.

Rules for making the C matrix

The C matrix is an M×N matrix with only 0, 1 and -1 elements. Each location in the matrix
corresponds to a particular node (first dimension) or voltage source (second dimension). If the
positive terminal of the ith voltage source is connected to node k, then the element (i,k) in the
C matrix is a 1. If the negative terminal of the ith voltage source is connected to node k, then
the element (i,k) in the C matrix is a -1. Otherwise, elements of the C matrix are zero.

In other words, the C matrix is the transpose of the B matrix. This is not the case when
dependent sources are present.

Rules for making the D matrix

The D matrix is an M×M matrix that is composed entirely of zeros. It can be non-zero if
dependent sources are considered.

3.1.3 The x matrix

The x matrix holds our unknown quantities and will be developed as the combination of 2 smaller
matrices v and j. It is considerably easier to define than the A matrix.

x =

[
v
j

]

(3.4)

The x matrix is 1×(M+N) (N is the number of nodes, and M is the number of independent
voltage sources) and:

• the v matrix is 1×N and hold the unknown voltages

• the j matrix is 1×M and holds the unknown currents through the voltage sources
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Rules for making the v matrix

The v matrix is an 1×N matrix formed of the node voltages. Each element in v corresponds to
the voltage at the equivalent node in the circuit (there is no entry for ground – node 0).

For a circuit with N nodes we get:

v =








v1
v2
...
vN








(3.5)

Rules for making the j matrix

The j matrix is an 1×M matrix, with one entry for the current through each voltage source. So
if there are M voltage sources V1, V2 through VM , the j matrix will be:

j =








iV1

iV2

...
iVM








(3.6)

3.1.4 The z matrix

The z matrix holds our independent voltage and current sources and will be developed as the
combination of 2 smaller matrices i and e. It is quite easy to formulate.

z =

[
i
e

]

(3.7)

The z matrix is 1×(M+N) (N is the number of nodes, and M is the number of independent
voltage sources) and:

• the i matrix is 1×N and contains the sum of the currents through the passive elements into
the corresponding node (either zero, or the sum of independent current sources)

• the e matrix is 1×M and holds the values of the independent voltage sources

Rules for making the i matrix

The i matrix is an 1×N matrix with each element of the matrix corresponding to a particular
node. The value of each element of i is determined by the sum of current sources into the
corresponding node. If there are no current sources connected to the node, the value is zero.

Rules for making the e matrix

The e matrix is an 1×M matrix with each element of the matrix equal in value to the corre-
sponding independent voltage source.
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3.1.5 A simple example

The example given in fig. 3.1 illustrates applying the rules for building the MNA matrices and
how this relates to basic equations used in circuit analysis.

R2
R=10 Ohm

R1
R=5 Ohm

I1
I=1 A

V1
U=1 V

node_1 node_2

Figure 3.1: example circuit applied to modified nodal analysis

Going through the MNA algorithm

The G matrix is a 2×2 matrix because there are 2 different nodes apart from ground which is
the reference node. On the diagonal you find the sum of the elements conductances connected
to the nodes 1 and 2. The off-diagonal matrix entries contain the negative conductances of the
elements connected between two nodes.

G =

[ 1
R1

− 1
R1

− 1
R1

1
R1

+ 1
R2

]

=

[
0.2 −0.2
−0.2 0.3

]

(3.8)

The B matrix (which is transposed to C) is a 1×2 matrix because there is one voltage source
and 2 nodes. The positive terminal of the voltage source V1 is connected to node 1. That is why

B = CT =

[
1
0

]

(3.9)

and the D matrix is filled with zeros only because there are no dependent (active and controlled)
devices in the example circuit.

D =
[
0
]

(3.10)

The x matrix is a 1×3 matrix. The MNA equations deliver a solution for the unknown voltages
at each node in a circuit except the reference node and the currents through each voltage source.

x =





v1
v2
iV1



 (3.11)

The z matrix is according to the rules for building it a 1×3 matrix. The upper two entries are
the sums of the currents flowing into node 1 and node 2. The lower entry is the voltage value of
the voltage source V1.
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z =





0
I1
U1



 =





0
1
1



 (3.12)

According to the MNA algorithm the equation system is represented by

[A] · [x] = [z] (3.13)

which is equivalent to

[
G B
C D

]

·
[
x
]
=
[
z
]

(3.14)

In the example eq. (3.14) expands to:





1
R1

− 1
R1

1

− 1
R1

1
R1

+ 1
R2

0

1 0 0



 ·





v1
v2
iV1



 =





0
I1
U1



 (3.15)

The equation systems to be solved is now defined by the following matrix representation.





0.2 −0.2 1
−0.2 0.3 0
1 0 0



 ·





v1
v2
iV1



 =





0
1
1



 (3.16)

Using matrix inversion the solution vector x writes as follows:

[x] = [A]−1 · [z] =





v1
v2
iV1



 =





1
4
0.6



 (3.17)

The result in eq. (3.17) denotes the current through the voltage source V1 is 0.6A, the voltage
at node 1 is 1V and the voltage at node 2 is 4V.

How the algorithm relates to basic equations in circuit analysis

Expanding the matrix representation in eq. (3.15) to a set of equations denotes the following
equation system consisting of 3 of them.

I : 0 =
1

R1
· v1 −

1

R1
· v2 + iV1 KCL at node 1 (3.18)

II : I1 = − 1

R1
· v1 +

(
1

R1
+

1

R2

)

· v2 KCL at node 2 (3.19)

III : U1 = v1 constitutive equation (3.20)

Apparently eq. I and eq. II conform to Kirchhoff’s current law at the nodes 1 and 2. The last
equation is just the constitutive equation for the voltage source V1. There are three unknowns
(v1, v2 and iV1) and three equations, thus the system should be solvable.

Equation III indicates the voltage at node 1 is 1V. Applying this result to eq. II and transposing
it to v2 (the voltage at node 2) gives
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v2 =
I1 +

1
R1
·U1

1
R1

+ 1
R2

= 4V (3.21)

The missing current through the voltage source V1 can be computed using both the results
v2 = 4V and v1 = 1V by transforming equation I.

iV1 =
1

R1
· v2 −

1

R1
· v1 = 0.6A (3.22)

The small example, shown in fig. 3.1, and the excursus into artless math verifies that the MNA
algorithm and classic electrical handiwork tend to produce the same results.

3.2 Extensions to the MNA

As noted in the previous sections the D matrix is zero and the B and C matrices are transposed
each other and filled with either 1, -1 or 0 provided that there are no dependent sources within
the circuit. This changes when introducing active (and controlled) elements. Examples are
voltage controlled voltage sources, transformers and ideal operational amplifiers. The models are
depicted in section 10 and 9

3.3 Non-linear DC Analysis

Previous sections described using the modified nodal analysis solving linear networks including
controlled sources. It can also be used to solve networks with non-linear components like diodes
and transistors. Most methods are based on iterative solutions of a linearised equation system.
The best known is the so called Newton-Raphson method.

3.3.1 Newton-Raphson method

The Newton-Raphson method is going to be introduced using the example circuit shown in fig.
3.2 having a single unknown: the voltage at node 1.

D1
Is=1e-15 A
N=1
Cj0=10 fF
M=0.5
Vj=0.7

I1
I=I0

R1
R=200 Ohm

node_1

Figure 3.2: example circuit for non-linear DC analysis

The 1x1 MNA equation system to be solved can be written as

[
G
]
·
[
V1

]
=
[
I0
]

(3.23)
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whereas the value for G is now going to be explained. The current through a diode is simply
determined by Schockley’s approximation

Id = IS ·
(

e
Vd
VT − 1

)

(3.24)

Thus Kirchhoff’s current law at node 1 can be expressed as

I0 =
V

R
+ IS ·

(

e
V
VT − 1

)

(3.25)

By establishing eq. (3.26) it is possible to trace the problem back to finding the zero point of
the function f .

f(V ) =
V

R
+ IS ·

(

e
V
VT − 1

)

− I0 (3.26)

Newton developed a method stating that the zero point of a functions derivative (i.e. the tangent)
at a given point is nearer to the zero point of the function itself than the original point. In
mathematical terms this means to linearise the function f at a starting value V (0).

f
(

V (0) +∆V
)

≈ f
(

V (0)
)

+
∂f (V )

∂V

∣
∣
∣
∣
V (0)

·∆V with ∆V = V (1) − V (0) (3.27)

Setting f(V (1)) = 0 gives

V (1) = V (0) − f
(
V (0)

)

∂f (V )

∂V

∣
∣
∣
∣
V (0)

(3.28)

or in the general case with m being the number of iteration

V (m+1) = V (m) − f
(
V (m)

)

∂f (V )

∂V

∣
∣
∣
∣
V (m)

(3.29)

This must be computed until V (m+1) and V (m) differ less than a certain barrier.

∣
∣
∣V (m+1) − V (m)

∣
∣
∣ < εabs + εrel ·

∣
∣
∣V (m)

∣
∣
∣ (3.30)

With very small εabs the iteration would break too early and for little εrel values the iteration
aims to a useless precision for large absolute values of V .
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f(V)

V

I

V(0)V(1)V(2)

Figure 3.3: Newton-Raphson method for example circuit

With this theoretical background it is now possible to step back to eq. (3.26) being the deter-
mining equation for the example circuit. With

g
(m)
d =

∂Id
∂V

∣
∣
∣
∣
V (m)

=
IS
VT
· e

V (m)

VT (3.31)

and
∂f (V )

∂V

∣
∣
∣
∣
V (m)

=
1

R
+ g

(m)
d (3.32)

the eq. (3.29) can be written as

(

g
(m)
d +

1

R

)

·V (m+1) = I0 −
(

I
(m)
d − g

(m)
d ·V (m)

)

(3.33)

when the expression

f
(

V (m)
)

=
1

R
·V (m) + I

(m)
d − I0 (3.34)

based upon eq. (3.26) is taken into account. Comparing the introductory MNA equation system
in eq. (3.23) with eq. (3.33) proposes the following equivalent circuit for the diode model.
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1

2

g
(m)
d I

(m)
d − g

(m)
d ·V(m)

Figure 3.4: accompanied equivalent circuit for intrinsic diode

With
Ieq = I

(m)
d − g

(m)
d ·V (m) (3.35)

the MNA matrix entries can finally be written as
[
gd −gd
−gd gd

]

·
[
V1

V2

]

=

[
−Ieq
Ieq

]

(3.36)

In analog ways all controlled current sources with non-linear current-voltage dependency built
into diodes and transistors can be modeled. The left hand side of the MNA matrix (the A
matrix) is called Jacobian matrix which is going to be build in each iteration step. For the
solution vector x possibly containing currents as well when voltage sources are in place a likely
convergence criteria as defined in eq. (3.30) must be defined for the currents.

Having understood the one-dimensional example, it is now only a small step to the general
multi-dimensional algorithm: The node voltage becomes a vector V (m), factors become the
corresponding matrices and differentiations become Jacobian matrices.

The function whose zero must be found is the transformed MNA equation 3.23:

f (V (m)) = G ·V (m) − I
(m)
0 (3.37)

The only difference to the linear case is that the vector I0 also contains the currents flowing out
of the non-linear components. The iteration formula of the Newton-Raphson method writes:

V (m+1) = V (m) −
(
∂f(V )

∂V

∣
∣
∣
∣
V (m)

)−1

·f (V (m)) (3.38)

Note that the Jacobian matrix is nothing else but the real part of the MNA matrix for the AC
analysis:

J(m) =
∂f(V )

∂V

∣
∣
∣
∣
V (m)

= G − ∂I0

∂V

∣
∣
∣
∣
V (m)

= G− J
(m)
nl = Re (GAC) (3.39)

where the index nl denotes only the non-linear terms. Putting equation 3.39 into equation 3.38
and multiplying it with the Jacobian matrix leads to

J (m) ·V (m+1) = J (m) ·V (m) − f (V (m)) (3.40)

=
(

G − J
(m)
nl

)

·V (m) −G ·V (m) + I
(m)
0 (3.41)

= −J(m)
nl ·V (m) + I

(m)
0 (3.42)
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So, bringing the Jacobian back to the right side results in the new iteration formula:

V (m+1) =
(

J (m)
)−1

·
(

−J(m)
nl ·V (m) + I

(m)
0

)

(3.43)

The negative sign in front of Jnl is due to the definition of I0 flowing out of the component.

Note that I
(m)
0 still contains contributions of linear and non-linear current sources.

3.3.2 Convergence

Numerical as well as convergence problems occur during the Newton-Raphson iterations when
dealing with non-linear device curves as they are used to model the DC behaviour of diodes and
transistors.

Linearising the exponential diode eq. (3.48) in the forward region a numerical overflow can occur.
The diagram in fig. 3.5 visualises this situation. Starting with V (0) the next iteration value gets
V (1) which results in an indefinite large diode current. It can be limited by iterating in current
instead of voltage when the computed voltage exceeds a certain value.

How this works is going to be explained using the diode model shown in fig. 3.4. When iterating
in voltage (as normally done) the new diode current is

Î
(m+1)
d = g

(m)
d

(

V̂ (m+1) − V (m)
)

+ I
(m)
d (3.44)

The computed value V̂ (m+1) in iteration step m+1 is not going to be used for the following step
when V (m) exceeds the critical voltage VCRIT which gets explained in the below paragraphs.
Instead, the value resulting from

I
(m+1)
d = IS ·

(

e
V (m+1)

nVT − 1

)

(3.45)

is used (i.e. iterating in current). With

Î
(m+1)
d

!
= I

(m+1)
d and g

(m)
d =

IS
n ·VT

· e
V (m)

n · VT (3.46)

the new voltage can be written as

V (m+1) = V (m) + nVT · ln
(

V̂ (m+1) − V (m)

nVT
+ 1

)

(3.47)

Proceeding from Shockley’s simplified diode equation the critical voltage is going to be defined.
The explained algorithm can be used for all exponential DC equations used in diodes and tran-
sistors.

I (V ) = IS ·
(

e
V

nVT − 1
)

(3.48)

y (x) = f (x) (3.49)
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V

I

Infinity

f(V)
V(0)

V(1)

V(2)

VCRIT →

Figure 3.5: numerical problem with Newton-Raphson algorithm

The critical voltage VCRIT is the voltage where the curve radius of eq. (3.48) has its minimum
with I and V having equally units. The curve radius R for the explicit definition in eq. (3.49)
can be written as

R =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(

1 +

(
dy

dx

)2
)3/2

d2y

dx2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(3.50)

Finding this equations minimum requires the derivative.

dR

dx
=

d2y

dx2
· 3
2

(

1 +

(
dy

dx

)2
)1/2

· 2 · dy
dx
· d

2y

dx2
−
(

1 +

(
dy

dx

)2
)3/2

· d
3y

dx3

(
d2y

dx2

)2 (3.51)

The diagram in fig. 3.6 shows the graphs of eq. (3.50) and eq. (3.51) with n = 1, IS = 100nA
and VT = 25mV.
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Figure 3.6: curve radius of exponential diode curve and its derivative

With the following higher derivatives of eq. (3.48)

dI (V )

dV
=

IS
nVT

· e
V

nVT (3.52)

d2I (V )

dV 2
=

IS
n2V 2

T

· e
V

nVT (3.53)

d3I (V )

dV 3
=

IS
n3V 3

T

· e
V

nVT (3.54)

the critical voltage results in

dR

dx

!
= 0 = 3− n2V 2

T

I2S
· e−2 V

nVT − 1 → VCRIT = nVT · ln
(

nVT

IS
√
2

)

(3.55)

In order to avoid numerical errors a minimum value of the pn-junction’s derivative (i.e. the
currents tangent in the operating point) gmin is defined. On the one hand this avoids very large
deviations of the appropriate voltage in the next iteration step in the backward region of the
pn-junction and on the other hand it avoids indefinite large voltages if gd itself suffers from
numerical errors and approaches zero.

The quadratic input I-V curve of field-effect transistors as well as the output characteristics of
these devices can be handled in similar ways. The limiting (and thereby improving the con-
vergence behaviour) algorithm must somehow ensure that the current and/or voltage deviation
from one iteration step to the next step is not too a large value. Because of the wide range of
existing variations how these curves are exactly modeled there is no standard strategy to achieve
this. Anyway, the threshold voltage VTh should play an important role as well as the direction
which the current iteration step follows.
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3.4 Overall solution algorithm for DC Analysis

In this section an overall solution algorithm for a DC analysis for linear as well as non-linear net-
works is given. With non-linear network elements at hand the Newton-Raphson (NR) algorithm
is applied.

save results:

prepare netlist:
  assign node and
  voltage source (built−in / real) numbers

choose a fallback convergence helper:
  RHS attenuation
  steepest descent

  
  line search
  gMin stepping
  source stepping

maximum iteration
count reached ?

a fallback left ?

apply fallback algorithm
restart NR iterations

yes

no

no

convergence
reached ?

solve network equation system

apply nodesetsis network linear ?

solve network equation system once

yes

no

yes yes

no

no solution

  node voltages
  branch currents
 (operating points)

Figure 3.7: DC solution algorithm flow chart

The algorithm shown in fig. 3.7 has been proved to be able to find DC solutions for a large variety
of networks. It must be said that the application of any of the fallback convergence helpers
indicates a nearly or definitely singular equation system (e.g. floating nodes or overdetermining
sources). The convergence problems are either due to an apparently “wrong” network topology
or to the model implementation of non-linear components. For some of the problems also refer
to the facts mentioned in section 15.2 on page 221. In some cases it may even occur that tiny
numerical inaccuracies lead to non-convergences whereas the choice of a more accurate (but
probably slower) equation system solver can help. With network topologies having more than a
single stable solution (e.g. bistable flip-flops) it is recommended to apply nodesets, i.e. forcing
the Newton-Raphson iteration into a certain direction by initial values.

When having problems to get a circuit have its DC solution the following actions can be taken
to solve these problems.

• check circuit topology (e.g. floating nodes or overdetermining sources)
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• check model parameters of non-linear components

• apply nodesets

• choose a more accurate equation system solver

• relax the convergence tolerances if possible

• increase the maximum iteration count

• choose the prefered fallback algorithm

The presented concepts are common to most circuit simulators each having to face the men-
tioned aspects. And probably facing it in a different manner with more or less big differences
in their implementation details especially regarding the (fallback) convergence helpers. None of
the algorithms based on Newton-Raphson ensures global convergence, thus very few documents
have been published either for the complexity of the topic or for uncertainties in the detailed
implementation each carrying the attribute “can help” or “may help”.

So for now the application of a circuit simulator to find the DC solution of a given network
sometimes keeps being a task for people knowing what they want to achieve and what they can
roughly expect.
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Chapter 4

AC Analysis

The AC analysis is a small signal analysis in the frequency domain. Basically this type of
simulation uses the same algorithms as the DC analysis (section 3.1 on page 27). The AC
analysis is a linear modified nodal analysis. Thus no iterative process is necessary. With the
Y-matrix of the components, i.e. now a complex matrix, and the appropriate extensions it is
necessary to solve the equation system (4.1) similar to the (linear) DC analysis.

[A] · [x] = [z] with A =

[
Y B
C D

]

(4.1)

Non-linear components have to be linearized at the DC bias point. That is, before an AC
simulation with non-linear components can be performed, a DC simulation must be completed
successfully. Then, the MNA stamp of the non-linear components equals their entries of the
Jacobian matrix, which was already computed during the DC simulation. In addition to this
real-valued elements, a further stamp has to be applied: The Jacobian matrix of the non-linear
charges multiplied by jω (see also section 10.7).
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Chapter 5

AC Noise Analysis

5.1 Definitions

First some definition must be done:

Reciprocal Networks:
Two networks A and B are reciprocal to each other if their transimpedances have the following
relation:

Zmn,A = Znm,B (5.1)

That means: Drive the current I into node n of circuit A and at node m the voltage I ·Zmn,A

appears. In circuit B it is just the way around.

Adjoint Networks:
Network A and network B are adjoint to each other if the following equation holds for their
MNA matrices:

[A]T = [B] (5.2)

5.2 The Algorithm

To calculate the small signal noise of a circuit, the AC noise analysis has to be applied [6]. This
technique uses the principle of the AC analysis described in chapter 4 on page 42. In addition to
the MNA matrix A one needs the noise current correlation matrix CY of the circuit, that contains
the equivalent noise current sources for every node on its main diagonal and their correlation on
the other positions.

The basic concept of the AC noise analysis is as follows: The noise voltage at node i should be
calculated, so the voltage arising due to the noise source at node j is calculated first. This has
to be done for every n nodes and after that adding all the noise voltages (by paying attention to
their correlation) leads to the overall voltage. But that would mean to solve the MNA equation
n times. Fortunately there is a more easy way. One can perform the above-mentioned n steps
in one single step, if the reciprocal MNA matrix is used. This matrix equals the MNA matrix
itself, if the network is reciprocal. A network that only contains resistors, capacitors, inductors,
gyrators and transformers is reciprocal.
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The question that needs to be answered now is: How to get the reciprocal MNA matrix for an
arbitrary network? This is equivalent to the question: How to get the MNA matrix of the adjoint
network. The answer is quite simple: Just transpose the MNA matrix!

For any network, calculating the noise voltage at node i is done by the following three steps:

1. Solving MNA equation: [A]
T · [x] = [A]

T ·
[
v
j

]

=















0
...
0
−1
0
...
0















← i-th row (5.3)

2. Creating noise correlation matrix: (CY ) (5.4)

3. Calculating noise voltage: vnoise,i =

√

[v]
T · (CY ) · [v]

∗
(5.5)

If the correlation between several noise voltages is also wanted, the procedure is straight forward:
Perform step 1 for every desired node, put the results into a matrix and replace the vector [v]
in step 3 by this matrix. This results in the complete correlation matrix. Indeed, the above-
mentioned algorithm is only a specialisation of transforming the noise correlation matrices (see
section 2.4.2).

If the normal AC analysis has already be done with LU decomposition, then the most time
consuming work of step 1 has already be done.

instead of Y = L ·U we have Y T = UT ·LT (5.6)

I.e. UT becomes the new L matrix and LT becomes the new U matrix, and the matrix equation
do not need to be solved again, because only the right-hand side was changed. So altogether
this is a quickly done task. (Note that in step 3, only the subvector [v] of vector [x] is used. See
section 3.1.3 for details on this.)

If the noise voltage at another node needs to be known, only the right-hand side of step 1 changes.
That is, a new LU decomposition is not needed.

Reusing the LU decomposed MNA matrix of the usual AC analysis is possible if there has been
no pivoting necessary during the decomposition.

When using either Crout’s or Doolittle’s definition of the LU decomposition during the AC
analysis the decomposition representation changes during the AC noise analysis as the matrix A
gets transposed. This means:

A = L ·U with L =









l11 0 . . . 0

l21 l22
. . .

...
...

. . . 0
ln1 . . . . . . lnn









and U =









1 u12 . . . u1n

0 1
...

...
. . .

. . .
...

0 . . . 0 1









(5.7)
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becomes

AT = UT ·LT with L =









1 0 . . . 0

l21 1
. . .

...
...

. . . 0
ln1 . . . . . . 1









and U =









u11 u12 . . . u1n

0 u22

...
...

. . .
. . .

...
0 . . . 0 unn









(5.8)

Thus the forward substitution (as described in section 15.2.4) and the backward substitution (as
described in section 15.2.4) must be slightly modified.

yi = zi −
i−1∑

k=1

yk · lik i = 1, . . . , n (5.9)

xi =
yi
uii
−

n∑

k=i+1

xk ·
uik

uii
i = n, . . . , 1 (5.10)

Now the diagonal elements lii can be neglected in the forward substitution but the uii elements
must be considered in the backward substitution.

5.2.1 A Simple Example

The network that is depicted in figure 5.1 is given. The MNA equation is (see chapter 3.1):

[A] · [x] =
[
1/R1 0
G 1/R2

]

·
[
V1

V2

]

=

[
0
0

]

(5.11)

R2R1

SRC1
G=1 S

Node2Node1

Figure 5.1: simple non-reciprocal network

Because of the controlled current source, the circuit is not reciprocal. The noise voltage at node
2 is the one to search for. Yes, this is very easy to calculate, because it is a simple example, but
the algorithm described above should be used. This can be achived by solving the equations

[
1/R1 0
G 1/R2

]

·
[
Z11

Z21

]

=

[
−1
0

]

(5.12)

and [
1/R1 0
G 1/R2

]

·
[
Z12

Z22

]

=

[
0
−1

]

(5.13)
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So, the MNA matrix must be solved two times: First to get the transimpedance from node 1 to
node 2 (i.e. Z21) and second to get the transimpedance from node 2 to node 2 (i.e. Z22). But why
solving it two times, if only one voltage should be calculated? With every step transimpedances
are calculated that are not need. Is there no more effective way?

Fortunately, there is Tellegen’s Theorem: A network and its adjoint network are reciprocal to
each other. That is, transposing the MNA matrix leads to the one of the reciprocal network. To
check it out:

[A]T · [x] =
[
1/R1 G
0 1/R2

]

·
[
V1

V2

]

=

[
0
0

]

(5.14)

R2R1

SRC1
G=1 S

Node2Node1

Figure 5.2: simple network to compare with adjoint network

Compare the transposed matrix with the reciprocal network in figure 5.2. It is true! But now it
is: [

1/R1 G
0 1/R2

]

·
[
Z12,reciprocal

Z22,reciprocal

]

=

[
1/R1 G
0 1/R2

]

·
[
Z21

Z22

]

=

[
0
−1

]

(5.15)

Because Z21 of the original network equals Z12 of the reciprocal network, the one step delivers
exactly what is needed. So the next step is:

([A]T )−1 ·
[
0
−1

]

=

[
R1 −G ·R1 ·R2

0 R2

]

·
[
0
−1

]

=

[
G ·R1 ·R2

−R2

]

=

[
Z21

Z22

]

(5.16)

Now, as the transimpedances are known, the noise voltage at node 2 can be computed. As there
is no correlation, it writes as follows:

< v2node2 > = < v2R1,node2 > + < v2R2,node2 > (5.17)

= < i2R1 > ·Z21 ·Z∗
21+ < i2R2 > ·Z22 ·Z∗

22 (5.18)

=
4 · k ·T ·∆f

R1
· (G ·R1 ·R2)

2 +
4 · k ·T ·∆f

R2
· (−R2)

2 (5.19)

= 4 · k ·T ·∆f ·
(
R1 · (G ·R2)

2 +R2

)
(5.20)

That’s it. Yes, this could have be computed more easily, but now the universal algorithm is also
clear.
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5.3 Noise Current Correlation Matrix

The sections 9 and 10 show the noise current correlation matrices of noisy components. The
equations are built for RMS noise currents with 1Hz bandwidth.
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Chapter 6

Transient Analysis

The transient simulation is the calculation of a networks response on arbitrary excitations. The
results are network quantities (branch currents and node voltages) as a function of time. Sub-
stantial for the transient analysis is the consideration of energy storing components, i.e. inductors
and capacitors.

The relations between current and voltage of ideal capacitors and inductors are given by

VC(t) =
1

C

∫

IC(t) · dt and IL(t) =
1

L

∫

VL(t) · dt (6.1)

or in terms of differential equations

IC(t) = C · dVC

dt
and VL(t) = L · dIL

dt
(6.2)

To calculate these quantities in a computer program numerical integration methods are required.
With the current-voltage relations of these components at hand it is possible to apply the modified
nodal analysis algorithm in order to calculate the networks response. This means the transient
analysis attempts to find an approximation to the analytical solution at discrete time points
using numeric integration.

6.1 Integration methods

The following differential equation is going to be solved.

dx

dt
= ẋ(t) = f(x, t) (6.3)

This differential equation is transformed into an algorithm-dependent finite difference equation
by quantizing and replacing

ẋ(t) = lim
h→0

x(t+ h)− x(t)

h
(6.4)

by the following equation.

ẋn =
xn+1 − xn

hn
(6.5)
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There are several linear single- and multi-step numerical integration methods available, each
having advantages and disadvantages concerning aspects of stability and accuracy. Integration
methods can also be classified into implicit and explicit methods. Explicit methods are inexpen-
sive per step but limited in stability and therefore not used in the field of circuit simulation to
obtain a correct and stable solution. Implicit methods are more expensive per step, have better
stability and therefore suitable for circuit simulation.

6.1.1 Properties of numerical integration methods

Beforehand some definitions and explanations regarding the terms often used in the following
sections are made in order to avoid bigger confusions later on.

• step size
The step size is defined by the arguments difference of successive solution vectors, i.e. the
time step hn during transient analysis with n being the n-th integration step.

hn = tn+1 − tn (6.6)

• order
The order k of an integration method is defined as follows: With two successive solution
vectors xn+1 and xn given, the successor xn+1 can be expressed by xn by a finite Taylor
series. The order of an integrations method equals the power of the step size up to which
the approximate solution of the Taylor series differs less than xn from the true solution
xn+1.

• truncation error
The truncation error εT depends on the order k of the integration method and results from
the remainder term of the Taylor series.

• stability
In order to obtain an accurate network solution integration methods are required to be
stable for a given step size h. Various stability definitions exist. This property is ex-
plained more in detail in the following sections. Basically it determines the usability of an
integration algorithm.

• single- and multistep methods
Single step methods only use xn in order to calculate xn+1, multi step methods use xi with
0 ≤ i < n.

• implicit and explicit methods
When using explicit integration methods the evaluation of the integration formula is suffi-
cient for each integration step. With implicit methods at hand it is necessary to solve an
equation system (with non-linear networks a non-linear equation system) because for the
calculation of xn+1, apart from xn and ẋn, also ẋn+1 is used. For the transient analysis of
electrical networks the implicit methods are better qualified than the explicit methods.

6.1.2 Elementary Methods

Implicit Euler Method (Backward Euler)

In the implicit Euler method the right hand side of eq. (6.3) is substituted by f(xn+1, tn+1)
which yields

f(x, t) = f(xn+1, tn+1) → xn+1 = xn + hn · f(xn+1, tn+1) (6.7)
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The backward euler integration method is a first order single-step method.

Explicit Euler Method (Forward Euler)

In the explicit Euler method the right hand side of eq. (6.3) is substituted by f(xn, tn) which
yields

f(x, t) = f(xn, tn) → xn+1 = xn + hn · f(xn, tn) (6.8)

The explicit Euler method has stability problems. The step size is limited by stability. In
general explicit time marching integration methods are not suitable for circuit analysis where
computation with large steps may be necessary when the solution changes slowly (i.e. when the
accuracy does not require small steps).

Trapezoidal method

For the bilinear (also called trapezoidal) integration method f(x, t) is substituted by

f(x, t) =
1

2
·
(
f(xn+1, tn+1) + f(xn, tn)

)
(6.9)

which yields

xn+1 = xn +
hn

2
·
(
f(xn+1, tn+1) + f(xn, tn)

)
(6.10)

In each integration step the average value of the intervals beginning and end is taken into account.
The trapezoidal rule integration method is a second order single-step method. There is no more
accurate second order integration method than the trapezoidal method.

h
t

x

forward-euler

x

t
h

backward-euler

h
t

x

trapezoidal

6.1.3 Linear Multistep Methods

For higher order multi-step integration methods the general purpose method of resolution for
the equation ẋ = f(x, t)

xn+1 =

p
∑

i=0

ai ·xn−i + h

p
∑

i=−1

bi · f(xn−i, tn−i) (6.11)

is used. With b−1 = 0 the method is explicit and therefore not suitable for obtaining the correct
and stable solution. When b−1 6= 0 the method is implicit and suitable for circuit simulation,
i.e. suitable for solving stiff problems. For differential equation systems describing electrical
networks the eigenvalues strongly vary. These kind of differential equation systems are called
stiff.
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For a polynom of order k the number of required coefficients is

2p+ 3 ≥ k + 1 (6.12)

The 2p+ 3 coeffcients are choosen to satisfy

xn+1 = x(tn+1) (6.13)

This can be achieved by the following equation system

p
∑

i=0

ai = 1

p
∑

i=1

(−i)jai + j

p
∑

i=−1

(−i)j−1bi = 1 for j = 1 . . . k

(6.14)

The different linear multistep integration methods which can be constructed by the equation sys-
tem (6.14) vary in the equality condition corresponding with (6.12) and the choice of coefficients
which are set to zero.

Gear

The Gear [7] formulae (also called BDF - backward differentiation formulae) have great im-
portance within the multi-step integration methods used in transient analysis programs. The
conditions

p = k − 1 and b0 = b1 = . . . = bk−1 = 0 (6.15)

due to the following equation system









0 1 1 1 1
1 0 −1 −2 −3
2 0 1 4 9
3 0 −1 −8 −27
4 0 1 16 81









·









b−1

a0
a1
a2
a3









=









1
1
1
1
1









(6.16)

for the Gear formulae of order 4. Order k = 1 yields the implicit Euler method. The example
given in the equation system (6.16) results in the following integration formula.

xn+1 = a0 ·xn + a1 ·xn−1 + a2 ·xn−2 + a3 ·xn−3 + h · b−1 · f(xn+1, tn+1)

=
48

25
·xn − 36

25
·xn−1 +

16

25
·xn−2 − 3

25
·xn−3 + h · 12

25
· f(xn+1, tn+1)

(6.17)

There is no more stable second order integration method than the Gear’s method of second order.
Only implicit Gear methods with order k ≤ 6 are zero stable.

Adams-Bashford

The Adams-Bashford algorithm is an explicit multi-step integration method whence

p = k − 1 and a1 = a2 = . . . = ak−1 = 0 and b−1 = 0 (6.18)

51



is set to satisfy the equation system (6.14). The equation system of the Adams-Bashford coeffi-
cients of order 4 is as follows.









1 0 0 0 0
0 1 1 1 1
0 0 −2 −4 −6
0 0 3 12 27
0 0 −4 −32 −108









·









a0
b0
b1
b2
b3









=









1
1
1
1
1









(6.19)

This equation system results in the following integration formula.

xn+1 = a0 ·xn + h · b0 · fn + h · b1 · fn−1 + h · b2 · fn−2 + h · b3 · fn−3

= xn + h · 55
24
· fn − h · 59

24
· fn−1 + h · 37

24
· fn−2 − h · 9

24
· fn−3

(6.20)

The Adams-Bashford formula of order 1 yields the (explicit) forward Euler integration method.

Adams-Moulton

The Adams-Moulton algorithm is an implicit multi-step integration method whence

p = k − 2 and a1 = a2 = . . . = ak−2 = 0 (6.21)

is set to satisfy the equation system (6.14). The equation system of the Adams-Moulton coeffi-
cients of order 4 is as follows.









1 0 0 0 0
0 1 1 1 1
0 2 0 −2 −4
0 3 0 3 12
0 4 0 −4 −32









·









a0
b−1

b0
b1
b2









=









1
1
1
1
1









(6.22)

This equation system results in the following integration formula.

xn+1 = a0 ·xn + h · b−1 · fn+1 + h · b0 · fn + h · b1 · fn−1 + h · b2 · fn−2

= xn + h · 9
24
· fn+1 + h · 19

24
· fn − h · 5

24
· fn−1 + h · 1

24
· fn−2

(6.23)

The Adams-Moulton formula of order 1 yields the (implicit) backward Euler integration method
and the formula of order 2 yields the trapezoidal rule.

6.1.4 Stability considerations

When evaluating the numerical formulations given for both implicit and explicit integration for-
mulas once rounding errors are unavoidable. For small values of h the evaluation must be repeated
very often and thus the rounding error possibly accumulates. With higher order algorithms it is
possible to enlarge the step width and thereby reduce the error accumulation.

On the other hand it is questionable whether the construction of implicit algorithms is really
valuable because of the higher computation effort caused by the necessary iteration (indices n+1

on both sides of the equation). In practice there is a class of differential equations which can be
reasonably handled by implicit algorithms where explicit algorithms completely fail because of
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the impracticable reduction of the step width. This class of differential equations are called stiff
problems. The effect of stiffness causes for small variations in the actual solution to be computed
very large deviations in the solution which get damped.

The numerical methods used for the transient analysis are required to be stiffly stable and
accurate as well. The regions requirements in the complex plane are visualized in the following
figure.

region III

region II

region I

Re {hλ}

Im {hλ}

Figure 6.1: stability requirements for stiff differential equation systems

For values of hλ in region II the numerical method must be stable and accurate, in region I
accurate and in region III only stable. The area outside the specified regions are of no particular
interest.

For the stability prediction of integration algorithms with regard to nonlinear differential equa-
tions and equation systems the simple and linear test differential equation

ẋ = λx with λ ∈ C,Re {λ} < 0, x ≥ 0 (6.24)

is used. The condition Re {λ} < 0 ensures the solution to be decreasing. The general purpose
method of resolution given in (6.11) can be solved by the polynomial method setting

xk = zk with z ∈ C (6.25)

Thus we get the characteristic polynom

ϕ (z) = ̺ (z) + hλ · η (z) = 0 (6.26)

=

n−1∑

i=−1

ai · zn−i + hλ

n−1∑

i=−1

bi · zn−i (6.27)
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Because of the conditions defined by (6.14) the above eq. (6.26) can only be true for

|z| < 1 (6.28)

which describes the inner unity circle on the complex plane. In order to compute the boundary
of the area of absolute stability it is necessary to calculate

µ (z) = hλ = −̺ (z)

η (z)
with z = ejϑ, 0 ≤ ϑ ≤ 2π (6.29)

These equations describe closed loops. The inner of these loops describe the area of absolute
stability. Because λ ≤ 0 and h ≥ 0 only the left half of the complex plane is of particular
interest. An integration algorithm is call zero-stable if the stability area encloses µ = 0. Given
this condition the algorithm is as a matter of principle usable, otherwise not. If an algorithms
stability area encloses the whole left half plane it is called A-stable. A-stable algorithms are
stable for any h and all λ < 0. Any other kind of stability area introduces certain restrictions
for µ.

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
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Im
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λ
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Figure 6.2: areas of absolute stability for order 1. . . 6 Gear formulae
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Figure 6.3: areas of absolute stability for order 1. . . 6 Adams-Moulton formulae
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Figure 6.4: areas of absolute stability for order 1. . . 6 Adams-Bashford formulae
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The figures 6.2, 6.3 and 6.4 visualize the evaluation of eq. (6.29) for the discussed integration
methods. All of the implicit formulae are zero-stable, thus principally usable. The (implicit)
backward Euler, Gear order 2 and the trapezoidal integration methods are A-stable. Fig. 6.2
shows why the Gear formulae are of such great importance for the transient analysis of electrical
networks. With least restrictions for µ they can be stabilized.

6.2 Predictor-corrector methods

In section 6.1 on pages 48 ff. various integration methods have been discussed. The elementary
as well as linear multistep methods (in order to get more accurate methods) always assumed
a−1 = −1 in its general form. Explicit methods were encountered by b−1 = 0 and implicit
methods by b−1 6= 0. Implicit methods have been shown to have a limited area of stability and
explicit methods to have a larger range of stability. With increasing order k the linear multistep
methods interval of absolute stability (intersection of the area of absolute stability in the complex
plane with the real axis) decreases except for the implicit Gear formulae.

For these given reasons implicit methods can be used to obtain solutions of ordinary differential
equation systems describing so called stiff problems. Now considering e.g. the implicit Adams-
Moulton formulae of order 3

xn+1 = xn + h · 5
12
· fn+1 + h · 8

12
· fn − h · 1

12
· fn−1 (6.30)

clarifies that fn+1 is necessary to calculate xn+1 (and the other way around as well). Every
implicit integration method has this particular property. The above equation can be solved
using iteration. This iteration is said to be convergent if the integration method is consistent
and zero-stable. A linear multistep method that is at least first-order is called a consistent
method. Zero-stability and consistency are necessary for convergence. The converse is also true.

The iteration introduces a second index m.

xn+1,m+1 = xn + h · 5
12
· fn+1,m + h · 8

12
· fn − h · 1

12
· fn−1 (6.31)

This iteration will converge for an arbitrary initial guess xn+1,0 only limited by the step size h.
In practice successive iterations are processed unless

∣
∣xn+1,m+1 − xn+1,m

∣
∣ < εabs + εrel ·

∣
∣xn+1,m

∣
∣ (6.32)

The disadvantage for this method is that the number of iterations until it converges is unknown.
Alternatively it is possible to use a fixed number of correction steps. A cheap way of providing
a good initial guess xn+1,0 is using an explicit integration method, e.g. the Adams-Bashford
formula of order 3.

xn+1,0 = xn + h · 23
12
· fn − h · 16

12
· fn−1 + h · 5

12
· fn−2 (6.33)

Equation (6.33) requires no iteration process and can be used to obtain the initial guess. The
combination of evaluating a single explicit integration method (the predictor step) in order to
provide a good initial guess for the successive evaluation of an implicit method (the corrector
step) using iteration is called predictor-corrector method. The motivation using an implicit
integration method is its fitness for solving stiff problems. The explicit method (though possibly
unstable) is used to provide a good initial guess for the corrector steps.
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6.2.1 Order and local truncation error

The order of an integration method results from the truncation error εT which is defined as

εT = x
(
tn+1

)
− xn+1 (6.34)

meaning the deviation of the exact solution x
(
tn+1

)
from the approximate solution xn+1 obtained

by the integration method. For explicit integration methods with b−1 = 0 the local truncation
error εLTE yields

εLTE = x
(
tn+1

)
− xn+1 (6.35)

and for implicit integration methods with b−1 6= 0 it is

εLTE ≈ x
(
tn+1

)
− xn+1 (6.36)

Going into equation (6.11) and setting a−1 = −1 the truncation error is defined as

εLTE =

p
∑

i=−1

ai ·x
(
tn−i

)
+ h

p
∑

i=−1

bi · f(x
(
tn−i

)
, tn−i) (6.37)

With the Taylor series expansions

x
(
tn+i

)
= x (tn) +

(ih)

1!
ẋ (tn) +

(ih)2

2!
ẍ (tn) + . . . (6.38)

f(x
(
tn+i

)
, tn+i) = ẋ

(
tn+i

)
= ẋ (tn) +

(ih)

1!
ẍ (tn) +

(ih)
2

2!

...
x (tn) + . . . (6.39)

the local truncation error as defined by eq. (6.37) can be written as

εLTE = C0 ·x (tn) + C1h · ẋ (tn) + C2h
2 · ẍ (tn) + . . . (6.40)

The error terms C0, C1 and C2 in their general form can then be expressed by the following
equation.

Cq = − 1

q!
·

p−1
∑

i=−1

ai · (p− i)q − 1

(q − 1)!

p−1
∑

i=−1

bi · (p− i)q−1 (6.41)

A linear multistep integration method is of order k if

εLTE = Ck+1 ·hk+1 ·x(k+1) (tn) +O
(
hk+2

)
(6.42)

The error constant Ck+1 of an p-step integration method of order k is then defined as

Ck+1 = − 1

(k + 1)!
·

p−1
∑

i=−1

ai · (p− i)
k+1 − 1

k!

p−1
∑

i=−1

bi · (p− i)
k

(6.43)

The practical computation of these error constants is now going to be explained using the Adams-
Moulton formula of order 3 given by eq. (6.30). For this third order method with a−1 = −1,
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a0 = 1, b−1 = 5/12, b0 = 8/12 and b1 = −1/12 the following values are obtained using eq. (6.41).

C0 = − 1

0!
·
(
−1 · 20 + 1 · 10

)
= 0 (6.44)

C1 = − 1

1!
·
(
−1 · 21 + 1 · 11

)
− 1

0!
·
(

5

12
20 +

8

12
10 − 1

12
00
)

= 0 (6.45)

C2 = − 1

2!
·
(
−1 · 22 + 1 · 12

)
− 1

1!
·
(

5

12
21 +

8

12
11 − 1

12
01
)

= 0 (6.46)

C3 = − 1

3!
·
(
−1 · 23 + 1 · 13

)
− 1

2!
·
(

5

12
22 +

8

12
12 − 1

12
02
)

= 0 (6.47)

C4 = − 1

4!
·
(
−1 · 24 + 1 · 14

)
− 1

3!
·
(

5

12
23 +

8

12
13 − 1

12
03
)

= − 1

24
(6.48)

In similar ways it can be verified for each of the discussed linear multistep integration methods
that

Cp = 0 ∀ 0 ≤ p ≤ k (6.49)

The following table summarizes the error constants for the implicit Gear formulae (also called
BDF - backward differention formulae).

implicit Gear formulae (BDF)

steps n 1 2 3 4 5 6

order k 1 2 3 4 5 6

error constant Ck+1 −1

2
−2

9
− 3

22
− 12

125
− 10

137
− 20

343

The following table summarizes the error constants for the explicit Gear formulae.

explicit Gear formulae

steps n 2 3 4 5 6 7

order k 1 2 3 4 5 6

error constant Ck+1 +1 +1 +1 +1 +1 +1

The following table summarizes the error constants for the explicit Adams-Bashford formulae.

explicit Adams-Bashford

steps n 1 2 3 4 5 6

order k 1 2 3 4 5 6

error constant Ck+1
1

2

5

12

3

8

251

720

95

288

19087

60480

The following table summarizes the error constants for the implicit Adams-Moulton formulae.

implicit Adams-Moulton

steps n 1 1 2 3 4 5

order k 1 2 3 4 5 6

error constant Ck+1 −1

2
− 1

12
− 1

24
− 19

720
− 3

160
− 863

60480
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6.2.2 Milne’s estimate

The locale truncation error of the predictor of order k∗ may be defined as

ε∗LTE = C∗
k∗+1 ·hk∗+1 ·x(k∗+1) (tn) +O

(

hk∗+2
)

(6.50)

and that of the corresponding corrector method of order k

εLTE = Ck+1 ·hk+1 ·x(k+1) (tn) +O
(
hk+2

)
(6.51)

If a predictor and a corrector method with same orders k = k∗ are used the locale truncation
error of the predictor-corrector method yields

εLTE ≈
Ck+1

C∗
k+1 − Ck+1

·
(
xn+1,m − xn+1,0

)
(6.52)

This approximation is called Milne’s estimate.

6.2.3 Adaptive step-size control

For all numerical integration methods used for the transient analysis of electrical networks the
choice of a proper step-size is essential. If the step-size is too large, the results become inaccurate
or even completely wrong when the region of absolute stability is left. And if the step-size is too
small the calculation requires more time than necessary without raising the accuracy. Usually a
chosen initial step-size cannot be used overall the requested time of calculation.

Basically a step-size h is chosen such that

εLTE < εabs + εrel ·
∣
∣xn+1,m

∣
∣ (6.53)

Forming a step-error quotient

q =
εLTE

εabs + εrel · |xn+1,m| (6.54)

yields the following algorithm for the step-size control. The initial step size h0 is chosen suffi-
ciently small. After each integration step every step-error quotient gets computed and the largest
qmax is then checked.

If qmax > 1, then a reduction of the current step-size is necessary. As new step-size the following
expression is used

hn =

(
ε

qmax

) 1
k+1
·hn (6.55)

with k denoting the order of the corrector-predictor method and ε < 1 (e.g. ≈ 0.8). If necessary
the process must be repeated.

If qmax > 1, then the calculated value in the current step gets accepted and the new step-size is

hn+1 =

(
ε

qmax

) 1
k+1
·hn (6.56)
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6.3 Energy-storage components

As already mentioned it is essential for the transient analysis to consider the energy storing
effects of components. The following section describes how the modified nodal analysis can be
used to take this into account.

6.3.1 Capacitor

The relation between current and voltage in terms of a differential equation for an ideal capacitor
is

IC(t) = C · dVC

dt
(6.57)

With
IC(V, t)

C
=

dVC

dt
= f(x, t) (6.58)

the discussed integration formulas (6.7), (6.10), (6.17) and (6.23) can be applied to the problem.
Rewriting them in an explicit form regarding the next integration current results in

In+1
C =

C

hn
V n+1
C − C

hn
V n
C (backward Euler) (6.59)

In+1
C =

2C

hn
V n+1
C − 2C

hn
V n
C − InC (trapezoidal) (6.60)

In+1
C =

C

b−1 ·hn
V n+1
C − a0 ·C

b−1 ·hn
V n
C −

a1 ·C
b−1 ·hn

V n−1
C − . . .− ak−1 ·C

b−1 ·hn
V n−k+1
C (6.61)

In+1
C =

C

b−1 ·hn

︸ ︷︷ ︸

geq

V n+1
C − a0 ·C

b−1 ·hn
V n
C −

b0
b−1

InC −
b1
b−1

In−1
C − . . .− bk−2

b−1
In−k+2
C

︸ ︷︷ ︸

Ieq

(6.62)

Each of these equations can be rewritten as

In+1
C = geq ·V n+1

C + Ieq (6.63)

which leads to the following companion model representing a current source with its accompanied
internal resistance.

1 g

eqI

2eq

Figure 6.5: companion equivalent circuit of a capacitor during transient analysis

Thus the complete MNA matrix equation for an ideal capacitance writes as follows.

[
+geq −geq
−geq +geq

]

·
[
V n+1
1

V n+1
2

]

=

[
−Ieq
+Ieq

]

(6.64)
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6.3.2 Inductor

The relation between current and voltage in terms of a differential equation for an ideal inductor
can be written as

VL(t) = L · dIL
dt

(6.65)

With
VL(I, t)

L
=

dIL
dt

= f(x, t) (6.66)

the discussed integration formulas (6.7), (6.10), (6.17) and (6.23) can be applied to the problem.
Rewriting them in an explicit form regarding the next integration voltage results in

V n+1
L =

L

hn
In+1
L − L

hn
InL (6.67)

V n+1
L =

2L

hn
In+1
L − 2L

hn
InL − V n

L (6.68)

V n+1
L =

L

b−1 ·hn
In+1
L − a0 ·L

b−1 ·hn
InL −

a1 ·L
b−1 ·hn

In−1
L − . . .− ak−1 ·L

b−1 ·hn
In−k+1
L (6.69)

V n+1
L =

L

b−1 ·hn

︸ ︷︷ ︸

req

In+1
L − a0 ·L

b−1 ·hn
InL −

b0
b−1

V n
L −

b1
b−1

V n−1
L − . . .− bk−2

b−1
V n−k+2
L

︸ ︷︷ ︸

Veq

(6.70)

Each of these equations can be rewritten as

V n+1
L = req · In+1

L + Veq (6.71)

which leads to the following companion model representing a voltage source with its accompanied
internal resistance.

1 2

eqV

eqr

Figure 6.6: companion equivalent circuit of a inductor during transient analysis

Thus the complete MNA matrix equation for an ideal inductor writes as follows.





0 0 +1
0 0 −1
+1 −1 −req



 ·





V n+1
1

V n+1
2

In+1
L



 =





0
0
Veq



 (6.72)

It is also possible to model the ideal inductor as a current source with an internal resistance
which would yield a similar equivalent circuit as for the capacitor. But with the proposed model
it is possible to use alike computation schemes for capacitors and inductors. Charges become
flues, capacitances become inductances and finally voltages become currents and the other way
around. Everything else (especially the coeffcients in the integration formulas) can be reused.
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6.3.3 Coupled Inductors

In a non-ideal transformer, there are two (or more) coupled inductors. The model for the transient
simulation is not very different from the one of a single inductor. In addition to each coil, the
mutal inductance has to be counted for.

VL1 = L1 ·
dIL1

dt
+M12 ·

dIL2

dt
+ IL1 ·R1 (6.73)

with M12 = k ·
√

L1 ·L2 (6.74)

and R1 ohmic resistance of coil 1 (6.75)

So it is:

V n+1
L1 = req11 · In+1

L1 + req12 · In+1
L2 + Veq(I

n
L1, I

n
L2, ...) (6.76)

Note that req11 includes the ohmic resistance R1. For backward Euler, it therefore follows:

V n+1
L1 =

(
L1

hn
+R1

)

︸ ︷︷ ︸

req11

· In+1
L1 +

k ·
√
L1 ·L2

hn
︸ ︷︷ ︸

req12

· In+1
L2 −

(
L1

hn
+R1

)

· InL1 −
k ·
√
L1 ·L2

hn
· InL2

︸ ︷︷ ︸

Veq1

(6.77)

The voltage across the secondary coil V n+1
L2 goes likewise by just changing the indices. Finally,

the MNA matrix writes (port numbers are according to figure 9.2):











0 0 0 0 +1 0
0 0 0 0 0 +1
0 0 0 0 0 −1
0 0 0 0 −1 0
+1 0 0 −1 −req11 −req12
0 +1 −1 0 −req21 −req22











·











V n+1
1

V n+1
2

V n+1
3

V n+1
4

In+1
L1

In+1
L2











=











0
0
0
0

Veq1

Veq2











(6.78)

These equations can also give an idea on how to model more than two coupled inductors. For
three coupled inductors, the voltage across coil 1 writes:

VL1 = L1 ·
dIL1

dt
+M12 ·

dIL2

dt
+M13 ·

dIL3

dt
+ IL1 ·R1 (6.79)

VL2 = L2 ·
dIL2

dt
+M12 ·

dIL1

dt
+M23 ·

dIL3

dt
+ IL2 ·R2 (6.80)

VL3 = L3 ·
dIL3

dt
+M13 ·

dIL1

dt
+M23 ·

dIL2

dt
+ IL3 ·R3 (6.81)

with M12 = k12 ·
√

L1 ·L2 (6.82)

and M13 = k13 ·
√

L1 ·L3 (6.83)

and M23 = k23 ·
√

L2 ·L3 (6.84)

This can be easily extended to an arbitrary number of coupled inductors.

63



6.3.4 Depletion Capacitance

For non-constant capacitances, especially depletion capacitance used in non-linear devices, in-
stead of eq. (6.57) the following equation holds.

IC(t) =
dQ

dt
(6.85)

With

dQ = C · dVC and
dVC

dQ

∣
∣
∣
∣
Q(m)

=
1

C
(6.86)

equation (3.29) can be written as

V
(m+1)
C = V

(m)
C −

Q
(

V
(m)
C

)

C(m)
(6.87)

⇒
(

V
(m+1)
C − V

(m)
C

)

·C(m) = −Q(m) (6.88)

yielding a similar iterative algorithm as already used for the non-linear DC analysis described
in section 3.3.1 on page 33. The indices (m) indicated the m-th Newton-Raphson iteration.
With this knowledge at hand it is possible to rewrite the explicit formula for the backward Euler
integration (6.59), i.e. the next iteration step Qm+1 is replaced by the Newton-Raphson formula
as follows.

In+1,m+1
C =

Qn+1,m+1 −Qn

hn

=
1

hn
·
(

Qn+1,m + Cn+1,m · (V n+1,m+1
C − V n+1,m

C )−Qn
) (6.89)

The double indices now indicate the n-th integration step and the m-th Newton-Raphson iter-
ation. The same can be done for the other integration formulas and results also in a similar
equivalent companion model as shown in fig. 6.5.

The capacitance C and the charge Q within the above equations is computed according to the
appropriate (non-linear) model formulations.

Q = C0 ·
(

+
VJ ·

(

1− (1− F )
1−M

)

1−M

+
1− F · (1 +M)

(1− F )
1+M

· (VC − F ·VJ )

+
M

2 ·VJ · (1− F )1+M
·
(
V 2
C − F 2 ·V 2

J

)

)

(6.90)

and

C =
dQ

dVC
=

C0

(1− F )M
·
(

1 +
M · (VC − F ·VJ)

VJ · (1− F )

)

(6.91)

for a depletion capacitance with VC > F ·VJ and for VC < F ·VJ those capacitances yield

Q =
C0 ·VJ

1−M
·
(

1−
(

1− VC

VJ

)1−M
)

(6.92)
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with

C =
dQ

dVC
= C0 ·

(

1− VC

VJ

)−M

(6.93)

6.3.5 Diffusion Capacitance

The current through a diffusion capacitance can be approximated by

IC(t) = τD
dID
dt

(6.94)

whence τD specifies the transit time through a pn-junction. The above formula can be rewritten
as

IC(t) = τD
dID
dVC

· dVC

dt
= τD · gD ·

dVC

dt
(6.95)

which means that eq. (6.89) can be used here, too. Also the formulas for the other integration
methods can be easily rewritten and the equivalent companion model shown in fig. 6.5 is valid
as well.

The capacitance C and the charge Q for a diffusion capacitance of a pn-junction according to
the most model formulations write as follows.

Q = τD · ID (6.96)

C =
dQ

dVC
= τD · gD (6.97)

6.3.6 MOS Gate Capacitances

The MOS gate capacitances are not constant values with respect to voltages (see section 10.5.3
on page 149). The capacitance values can best be described by the incremental capacitance:

C(V ) =
dQ(V )

dV
(6.98)

where Q(V ) is the charge on the capacitor and V is the voltage across the capacitor.

The formula for calculating the differential is difficult to derive (because not given in the Meyer
capacitance model). Furthermore, the voltage is required as the accumulated capacitance over
time. The timewise charge formula is:

Q(V ) =

∫ V

0

C(V ) · dV (6.99)

And for small intervalls:

Q(V ) =

∫ V n+1

V n

C(V ) · dV (6.100)

The integral has been approximated in SPICE by:

Qn+1 =
(
V n+1 − V n

)
· C(V n+1) + C(V n)

2
(6.101)

This last formula is the trapezoidal rule for integration over two points. The charge is approx-
imated as the average capacitance times the change in voltage. If the capacitance is nonlinear,
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this approximation can be in error. To estimate the charge accurately, use Simpson’s numerical
integration rule. This method provides charge conservation control.

Qn+1 =
(
V n+1 − V n

)
· C(V n+1) + 4C(V n) + C(V n−1)

6
(6.102)

6.4 Special time-domain models

6.4.1 AM modulated AC source

An AC voltage source in the time-domain is characterized by its frequency f , the initial phase φ
and the amplitude A. During amplitude modulation the modulation level M must be considered.
The output voltage of the source is determined by the following equation.

V1 (t)− V2 (t) = (1 +M ·V3 (t)) ·A · sin (ω · t+ φ) (6.103)

AM
1

2

3

Figure 6.7: AM modulated AC source

The appropriate MNA matrix entries during the transient analysis decribing a simple linear
operation can be written as







. . . 1

. . . −1

. . . 0
1 −1 −M ·A · sin (ω · t+ φ) 0






·







V1 (t)
V2 (t)
V3 (t)
J1 (t)






=







I1 (t)
I2 (t)
I3 (t)

A · sin (ω · t+ φ)







(6.104)

6.4.2 PM modulated AC source

The phase modulated AC source is also characterized by the frequency f , the amplidude A and
by an initial phase φ. The output voltage in the time-domain is determinded by the following
equation

V1 (t)− V2 (t) = A · sin (ω · t+ φ+M ·V3 (t)) (6.105)

whereas M denotes the modulation index and V3 the modulating voltage.

66



PM
1

2

3

Figure 6.8: PM modulated AC source

The component is non-linear in the frequency- as well in the time-domain. In order to prepare
the source for subsequent Newton-Raphson iterations the derivative

g =
∂ (V1 − V2)

∂V3
= M ·A · cos (ω · t+ φ+M ·V3) (6.106)

is required. With this at hand the MNA matrix entries of the PM modulated AC voltage source
during the transient analysis can be written as







. . . +1

. . . −1

. . . 0
+1 −1 g 0






·







V1 (t)
V2 (t)
V3 (t)
J1 (t)






=







I1 (t)
I2 (t)
I3 (t)

g ·V3 −A · sin (ω · t+ φ+M ·V3)







(6.107)

6.5 Components defined in the frequency domain

The time-domain simulation of components defined in the frequency-domain can be performed
using an inverse Fourier transformation of the Y-parameters of the component (giving the impulse
response) and an adjacent convolution with the prior node voltages (or branch currents) of the
component.

This requires a memory of the node voltages and branch currents for each component defined in
the frequency-domain. During a transient simulation the time steps are not equidistant and the
maximum required memory length Tend of a component may not correspond with the time grid
produced by the time step control (see section 6.2.3 on page 60) of the transient simulation. That
is why an interpolation of exact values (voltage or current) at a given point in time is necessary.

Components defined in the frequency-domain can be divided into two major classes.

• Components with frequency-independent (non-dispersive) delay times and with or without
constant losses.

• Components with frequency-dependent (dispersive) delay times and losses.

6.5.1 Components with frequency-independent delay times

Components with constant delay times are a special case. The impulse response corresponds to
the node voltages and/or branch currents at some prior point in time optionally multiplied with
a constant loss factor.
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Voltage controlled current source

With no constant delay time the MNA matrix entries of a voltage controlled current source is
determined by the following equations according to the node numbering in fig. 9.8 on page 108.

I2 = −I3 = G · (V1 − V4) (6.108)

The equations yield the following MNA entries during the transient analysis.







0 0 0 0
+G 0 0 −G
−G 0 0 +G
0 0 0 0






·







V1

V2

V3

V4






=







I1
I2
I3
I4







(6.109)

With a constant delay time τ eq. (6.108) rewrites as

I2 (t) = −I3 (t) = G · (V1 (t− τ)− V4 (t− τ)) (6.110)

which yields the following MNA entries during the transient analysis.







0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0






·







V1 (t)
V2 (t)
V3 (t)
V4 (t)






=







I1 (t)
−G · (V1 (t− τ)− V4 (t− τ))
+G · (V1 (t− τ)− V4 (t− τ))

I4 (t)







(6.111)

Voltage controlled voltage source

The MNA matrix entries of a voltage controlled voltage source are determined by the following
characteristic equation according to the node numbering in fig. 9.10 on page 109.

V2 − V3 = G · (V4 − V1) (6.112)

This equation yields the following augmented MNA matrix entries with a single extra branch
equation.









0 0 0 0 0
0 0 0 0 −1
0 0 0 0 1
0 0 0 0 0
G −1 1 −G 0









·









V1

V2

V3

V4

J1









=









I1
I2
I3
I4
0









(6.113)

When considering an additional constant time delay τ eq. (6.112) must be rewritten as

V2 (t)− V3 (t) = G · (V4 (t− τ)− V1 (t− τ)) (6.114)

This representation requires a change of the MNA matrix entries which now yield the following
matrix equation.









0 0 0 0 0
0 0 0 0 −1
0 0 0 0 1
0 0 0 0 0
0 −1 1 0 0









·









V1 (t)
V2 (t)
V3 (t)
V4 (t)
J1 (t)









=









I1 (t)
I2 (t)
I3 (t)
I4 (t)

G · (V4 (t− τ) − V1 (t− τ))









(6.115)
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Current controlled current source

With no time delay the MNA matrix entries of a current controlled current source are determined
by the following equations according to the node numbering in fig. 9.9 on page 109.

I2 = −I3 = G · I1 = −G · I4 (6.116)

V1 = V4 (6.117)

These equations yield the following MNA matrix entries using a single extra branch equation.








0 0 0 0 1/G
0 0 0 0 1
0 0 0 0 −1
0 0 0 0 −1/G
1 0 0 −1 0









·









V1

V2

V3

V4

J1









=









I1
I2
I3
I4
0









(6.118)

When additional considering a constant delay time τ eq. (6.116) must be rewritten as

I2 (t) = −I3 (t) = G · I1 (t− τ) = −G · I4 (t− τ) (6.119)

Thus the MNA matrix entries change as well yielding








0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −1
1 0 0 −1 0









·









V1 (t)
V2 (t)
V3 (t)
V4 (t)
J1 (t)









=









I1 (t)
−G · J1 (t− τ)
+G · J1 (t− τ)

I4 (t)
0









(6.120)

Current controlled voltage source

The MNA matrix entries for a current controlled voltage source are determined by the following
characteristic equations according to the node numbering in fig. 9.11 on page 110.

V2 − V3 = G · I2 = −G · I3 (6.121)

V1 = V4 (6.122)

These equations yield the following MNA matrix entries.










0 0 0 0 1 0
0 0 0 0 0 −1
0 0 0 0 0 1
0 0 0 0 −1 0
0 1 −1 0 G 0
1 0 0 −1 0 0











·











V1

V2

V3

V4

J1
J2











=











I1
I2
I3
I4
0
0











(6.123)

With an additional time delay τ between the input current and the output voltage eq. (6.121)
rewrites as

V2 (t)− V3 (t) = G · I2 (t− τ) = −G · I3 (t− τ) (6.124)

Due to the additional time delay the MNA matrix entries must be rewritten as follows










0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 −1
0 0 0 0 −1 0
0 1 −1 0 0 0
1 0 0 −1 0 0











·











V1 (t)
V2 (t)
V3 (t)
V4 (t)
J1 (t)
J2 (t)











=











I1 (t)
I2 (t)
I3 (t)
I4 (t)
0

G · J1 (t− τ)











(6.125)
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Ideal transmission line

The A-parameters of a transmission line (see eq (9.200) on page 111) are defined in the frequency
domain. The equation system formed by these parameters write as

I. V1 = V2 · cosh (γ · l) + I2 ·ZL · sinh (γ · l) (6.126)

II. I1 = V2 ·
1

ZL
sinh (γ · l) + I2 · cosh (γ · l) (6.127)

2

1

I 1

V

I 2

2

l

ZL

1

V

Figure 6.9: ideal transmission line

Applying I + ZL · II and I− ZL · II to the above equation system and using the following trans-
formations

coshx+ sinhx =
ex + e−x

2
+

ex − e−x

2
= ex (6.128)

coshx− sinhx =
ex + e−x

2
− ex − e−x

2
= e−x (6.129)

yields

V1 = V2 · e−γ · l + ZL ·
(
I1 + I2 · e−γ · l) (6.130)

V2 = V1 · e−γ · l + ZL ·
(
I2 + I1 · e−γ · l) (6.131)

whereas γ denotes the propagation constant α+ jβ, l the length of the transmission line and ZL

the line impedance.

These equations can be transformed from the frequency domain into the time domain using the
inverse Fourier transformation. The frequency independent loss α 6= f (ω) gives the constant
factor

A = e−α · l (6.132)

The only remaining frequency dependent term is

e−jβ · l = e−jω · τ with β =
ω

vph
=

ω

c0
=

ω · τ
l

(6.133)

which yields the following transformation

f (ω) · e−γ · l = A · f (ω) · e−jω · τ ⇐⇒ A · f (t− τ) (6.134)

All the presented time-domain models with a frequency-independent delay time are based on this
simple transformation. It can be applied since the phase velocity vph 6= f (ω) is not a function
of the frequency. This is true for all non-dispersive transmission media, e.g. air or vacuum.
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The given transformation can now be applied to the eq. (6.130) and eq. (6.131) defined in the
frequency-domain to obtain equations in the time-domain.

The length Tend of the memory needed by the ideal transmission line can be easily computed by

Tend = τ =
l

vph
=

l

c0
(6.135)

whereas c0 denotes the speed of light in free space (since there is no dielectric involved during
transmission) and l the physical length of the transmission line.

The MNA matrix for a lossy (or lossless with α = 0) transmission line during the transient
analysis is augmented by two new rows and columns in order to consider the following branch
equations.

V1 (t) = ZL · I1 (t) +A · (ZL · I2 (t− τ) + V2 (t− τ)) (6.136)

V2 (t) = ZL · I2 (t) +A · (ZL · I1 (t− τ) + V1 (t− τ)) (6.137)

Thus the MNA matrix entries can be written as






0 0 1 0
0 0 0 1
1 0 −ZL 0
0 1 0 −ZL






·







V1 (t)
V2 (t)
J1 (t)
J2 (t)






=







I1 (t)
I2 (t)

A · (V2 (t− τ) + ZL · J2 (t− τ))
A · (V1 (t− τ) + ZL · J1 (t− τ))







(6.138)

with A denoting the loss factor derived from the constant (and frequency independent) line
attenuation α and the transmission line length l.

A = e−
α
2 · l (6.139)

Ideal 4-terminal transmission line

The ideal 4-terminal transmission line is a two-port as well. It differs from the 2-terminal line as
shown in fig. 6.5.1 in two new node voltages and branch currents.

4

1

ZL

I 21 2

4 3

I 3I

I

Figure 6.10: ideal 4-terminal transmission line

The differential mode of the ideal 4-terminal transmission line can be modeled by modifying the
branch eqs. (6.136) and (6.137) of the 2-terminal line which yields

V1 (t)− V4 (t) = ZL · I1 (t) +A · (ZL · I2 (t− τ) + V2 (t− τ)− V3 (t− τ)) (6.140)

V2 (t)− V3 (t) = ZL · I2 (t) +A · (ZL · I1 (t− τ) + V1 (t− τ)− V4 (t− τ)) (6.141)
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Two more conventions must be indroduced

I1 (t) = −I4 (t) (6.142)

I2 (t) = −I3 (t) (6.143)

which is valid for the differential mode (i.e. the odd mode) of the transmission line and represents
a kind of current mirror on each transmission line port.

According to these consideration the MNA matrix entries during transient analysis are










. . . . 1 0

. . . . 0 1

. . . . 0 −1

. . . . −1 0
1 0 0 −1 −ZL 0
0 1 −1 0 0 −ZL











·











V1 (t)
V2 (t)
V3 (t)
V4 (t)
J1 (t)
J2 (t)











=











I1 (t)
I2 (t)
I3 (t)
I4 (t)

A · (V2 (t− τ)− V3 (t− τ) + ZL · J2 (t− τ))
A · (V1 (t− τ)− V4 (t− τ) + ZL · J1 (t− τ))











(6.144)

Logical devices

The analogue models of logical (digital) components explained in section 10.6 on page 153 do
not include delay times. With a constant delay time τ the determining equations for the logical
components yield

uout (t) = f (Vin,1 (t− τ) , Vin,2 (t− τ) , . . .) (6.145)

With the prior node voltages Vin,n (t− τ) known the MNA matrix entries in eq. (10.268) can be
rewritten as 





. . . 1

. . . 0

. . . 0
1 0 0 0






·







Vout (t)
Vin,1 (t)
Vin,2 (t)
Iout (t)






=







I0 (t)
I1 (t)
I2 (t)
uout (t)







(6.146)

during the transient analysis. The components now appear to be simple linear components. The
derivatives are not anymore necessary for the Newton-Raphson iterations. This happens to be
because the output voltage does not depend directly on the input voltage(s) at exactly the same
time point.

6.5.2 Components with frequency-dependent delay times and losses

In the general case a component with P ports which is defined in the frequency-domain can be
represented by the following matrix equation.








Y11 Y12 . . . Y1P

Y21 Y22 Y2P

...
. . .

...
YP1 YP2 . . . YPP







·








V1

V2

...
VP







=








I1
I2
...
IP








(6.147)

This matrix representation is the MNA representation during the AC analysis. With no specific
time-domain model at hand the equation

[
Y (jω)

]
·
[
V (jω)

]
=
[
I (jω)

]
(6.148)

must be transformed into the time-domain using a Fourier transformation.
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The convolution integral

The multiplication in the frequency-domain is equivalent to a convolution in the time-domain
after the transformation. It yields the following matrix equation

[
H (t)

]
∗
[
V (t)

]
=
[
I (t)

]
(6.149)

whereas H (t) is the impulse response based on the frequency-domain model and the ∗ operator
denotes the convolution integral

H (t) ∗ V (t) =

∫ +∞

−∞
H (τ) ·V (t− τ) dτ (6.150)

The lower bound of the given integral is set to zero since both the impulse response as well as the
node voltages are meant to deliver no contribution to the integral. Otherwise the circuit appears
to be unphysical. The upper limit should be bound to a maximum impulse response time Tend

H (t) ∗ V (t) =

∫ Tend

0

H (τ) ·V (t− τ) dτ (6.151)

with
H (τ) = 0 ∀ τ > Tend (6.152)

Since there is no analytic represention for the impulse response as well as for the node voltages
eq. (6.151) must be rewritten to

H (n ·∆t) ∗ V (n ·∆t) =
N−1∑

k=0

H (k ·∆t) ·V ((n− k) ·∆t) (6.153)

with

∆t =
Tend

N
(6.154)

whereas N denotes the number of samples to be used during numerical convolution. Using the
current time step t = n ·∆t it is possible to express eq. (6.153) as

I (t) = H (0) ·V (t) +

N−1∑

k=1

H (k ·∆t) ·V (t− k ·∆t)

︸ ︷︷ ︸

Ieq

(6.155)

With G = H (0) the resulting MNA matrix equation during the transient analysis gets
[
G
]
·
[
V (t)

]
=
[
I (t)

]
−
[
Ieq
]

(6.156)

This means, the component defined in the frequency-domain can be expressed with an equiv-
alent DC admittance G and additional independent current sources in the time-domain. Each
independent current source at node r delivers the following current

Ieqr =

P∑

c=1

N−1∑

k=1

Hrc (k ·∆t) ·Vc (t− k ·∆t) (6.157)

whereas Vc denotes the node voltage at node c at some prior time and Hrc the impulse response
of the component based on the frequency-domain representation. The MNA matrix equation
during transient analysis can thus be written as

73










G11 G12 . . . G1P

G21 G22 G2P

...
. . .

...
GP1 GP2 . . . GPP







·








V1 (t)
V2 (t)

...
VP (t)







=








I1 (t)
I2 (t)
...

IP (t)







−








Ieq1
Ieq2
...

IeqP








(6.158)

Frequency- to time-domain transformation

With the number of samples N being a power of two it is possible to use the Inverse Fast Fourier
Transformation (IFFT). The transformation to be performed is

Y (jω)⇔ H (t) (6.159)

The maximum impulse response time of the component is specified by Tend requiring the following
transformation pairs.

Y (jωi)⇔ H (ti) with i = 0, 1, 2, . . . , N − 1 (6.160)

with

ti = 0,∆t, 2 ·∆t, . . . , (N − 1) ·∆t (6.161)

ωi = 0,
1

Tend
,

1

Tend
, . . . ,

N/2

Tend
(6.162)

The frequency samples in eq. (6.162) indicate that only half the values are required to obtain
the appropriate impulse response. This is because the impulse response H (t) is real valued and
that is why

Y (jω) = Y ∗ (−jω) (6.163)

The maximum frequency considered is determined by the maximum impulse response time Tend

and the number of time samples N .

fmax =
N/2

2π ·Tend
=

1

4π ·∆t
(6.164)

It could prove useful to weight the Y-parameter samples in the frequency-domain by multiplying
them with an appropriate windowing function (e.g. Kaiser-Bessel).

Implementation considerations

For the method presented the Y-parameters of a component must be finite for f → 0 as well as
for f → fmax. To obtain G = H (0) the Y-parameters at f = 0 are required. This cannot be
ensured for the general case (e.g. for an ideal inductor).

6.6 Convergence

Similar to the DC analysis convergence problems occur during the transient analysis (see section
3.3.2 on page 37) as well. In order to improve the overall convergence behaviour it is possible to
improve the models on the one hand and/or to improve the algorithms on the other hand.

The implications during Newton-Raphson iterations solving the linear equation system
[
A
(
xk
)]
·
[
xk+1

]
=
[
z
(
xk
)]

(6.165)
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are continuous device model equations (with continuous derivatives as well), floating nodes (make
the Jacobian matrix A singular) and the initial guess x0. The convergence problems which in
fact occur are local minimums causing the matrix A to be singular, nearly singular matrices and
overflow problems.

local minimum (oscillating) nearly singular

numerical overflowasymptotic behaviour (divergence)

6.6.1 Limiting schemes

The modified (damped) Newton-Raphson schemes are based on the limitation of the solution
vector xk in each iteration.

xk+1 = xk + α ·∆xk+1 with ∆xk+1 = xk+1 − xk (6.166)

One possibility to choose a value for α ∈ [0, 1] is

α =
γ

‖∆xk+1‖∞
(6.167)

This is a heuristic and does not ensure global convergence, but it can help solving some of the
discussed problems. Another possibility is to pick a value αk which minimizes the L2 norm of
the right hand side vector. This method performs a one-dimensional (line) search into Newton
direction and guarantees global convergence.

xk+1 = xk + αk ·∆xk+1 with an αk which minimizes
∥
∥z
(
xk + αk ·∆xk+1

)∥
∥
2

(6.168)

The one remaining problem about that line search method for convergence improvement is its
iteration into local minimums where the Jacobian matrix is singular. The damped Newton-
Raphson method “pushes” the matrix into singularity as depicted in fig. 6.11.
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1x2 x1 x0x

Figure 6.11: singular Jacobian problem

6.6.2 Continuation schemes

The basic idea behind this Newton-Raphson modification is to generate a sequence of problems
such that a problem is a good initial guess for the following one, because Newton basically
converges given a close initial guess.

The template algorithm for this modification is to solve the equation system

[A] · [x]− [z] = 0 (6.169)

F (x (λ) , λ) = 0 (6.170)

with the parameter λ ∈ [0, 1] given that x (λ) is sufficiently smooth. F (x (0) , 0) starts the
continuation and F (x (1) , 1) ends the continuation. The algorithm outline is as follows: First
solve the problem F (x (0) , 0), e.g. set λ = ∆λ = 0.01 and try to solve F (x (λ) , λ). If Newton-
Raphson converged then increase λ by ∆λ and double ∆λ = 2 ·∆λ, otherwise half ∆λ = 0.5 ·∆λ
and set λ = λprev +∆λ. Repeat this until λ = 1.

Source stepping

Applied to the solution of (non-linear) electrical networks one may think of α ∈ [0, 1] as a
multiplier for the source vector S yielding S (α) = αS. Varying α form 0 to 1 and solve at each
α. The actual circuit solution is done when α = 1. This method is called source stepping. The
solution vector x (α) is continuous in α (hence the name continuation scheme).

Minimal derivative gmin stepping

Another possibility to improve convergence of almostly singular electrical networks is the so
called gmin stepping, i.e. adding a tiny conductance to ground at each node of the Jacobian
A matrix. The continuation starts e.g. with gmin = 0.01 and ends with gmin = 0 reached by
the algorithm described in section 6.6.2. The equation system is slightly modified by adding the
current gmin to each diagonal element of the matrix A.
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Chapter 7

Harmonic Balance Analysis

Harmonic balance is a non-linear, frequency-domain, steady-state simulation. The voltage and
current sources create discrete frequencies resulting in a spectrum of discrete frequencies at
every node in the circuit. Linear circuit components are solely modeled in frequency domain.
Non-linear components are modeled in time domain and Fourier-transformed before each solving
step. The informations in this chapter are taken from [8] (chapter 3) which is a very nice and
well-written publication on this topic.

The harmonic balance simulation is ideal for situations where transient simulation methods are
problematic. These are:

• components modeled in frequency domain, for instance (dispersive) transmission lines

• circuit time constants large compared to period of simulation frequency

• circuits with lots of reactive components

Harmonic balance methods, therefore, are the best choice for most microwave circuits excited
with sinusoidal signals (e.g. mixers, power amplifiers).

7.1 The Basic Concept

As the non-linear elements are still modeled in time domain, the circuit first must be separated
into a linear and a non-linear part. The internal impedances Zi of the voltage sources are put into
the linear part as well. Figure 7.1 illustrates the concept. Let us define the following symbols:

M = number of (independent) voltage sources

N = number of connections between linear and non-linear subcircuit

K = number of calculated harmonics

L = number of nodes in linear subcircuit
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Figure 7.1: circuit partitioning in harmonic balance

The linear circuit is modeled by two transadmittance matrices: The first one Ỹ relates the
source voltages vS,1...vS,M to the interconnection currents i1...iN and the second one Ŷ relates
the interconnection voltages v1...vN to the interconnection currents i1...iN . Taking both, we can
express the current flowing through the interconnections between linear and non-linear subcircuit:

I = Ỹ N×M ·V S + Ŷ N×N ·V = IS + Ŷ ·V (7.1)

Because V S is known and constant, the first term can already be computed to give IS . Taking
the whole linear network as one block is called the ”piecewise” harmonic balance technique.

The non-linear circuit is modeled by its current function i(t) = fg(v1, ..., vP ) and by the charge
of its capacitances q(t) = fq(v1, ..., vQ). These functions must be Fourier-transformed to give the
frequency-domain vectors Q and IG, respectively.

A simulation result is found if the currents through the interconnections are the same for the linear
and the non-linear subcircuit. This principle actually gave the harmonic balance simulation its
name, because through the interconnections the currents of the linear and non-linear subcircuits
have to be balanced at every harmonic frequency. To be precise the described method is called
Kirchhoff’s current law harmonic balance (KCL-HB). Theoretically, it would also be possible to
use an algorithm that tries to balance the voltages at the subcircuit interconnections. But then
the Z matrix (linear subcircuit) and current-dependend voltage laws (non-linear subcircuit) have
to be used. That doesn’t fit the need (see other simulation types).

So, the non-linear equation system that needs to be solved writes:

F(V) = (IS) + (Ŷ ) · (V )
︸ ︷︷ ︸

linear

+ j ·Ω ·Q+ IG
︸ ︷︷ ︸

non-linear

= 0 (7.2)
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where matrix Ω contains the angular frequencies on the first main diagonal and zeros anywhere
else, 0 is the zero vector.

After each iteration step, the inverse Fourier transformation must be applied to the voltage
vector V . Then the time domain voltages v0,1...vK,N are put into i(t) = fg(v1, ..., vP ) and
q(t) = fq(v1, ..., vQ) again. Now, a Fourier transformation gives the vectors Q and IG for the
next iteration step. After repeating this several times, a simulation result has hopefully be found.

Having found this result means having got the voltages v1...vN at the interconnections of the
two subcircuits. With these values the voltages at all nodes can be calculated: Forget about the
non-linear subcircuit, put current sources at the former interconnections (using the calculated
values) and perform a normal AC simulation. After that the simulation is complete.

A short note to the construction of the quantities: One big difference between the HB and the
conventional simulation types like a DC or an AC simulation is the structure of the matrices
and vectors. A vector used in a conventional simulation contains one value for each node. In an
HB simulation there are many harmonics and thus, a vector contains K values for each node.
This means that within a matrix, there is a K × K diagonal submatrix for each node. Using
this structure, all equations can be written in the usual way, i.e. without paying attention to the
special matrix and vector structure. In a computer program, however, a special matrix class is
needed in order to not waste memory for the off-diagonal zeros.

7.2 Going through each Step

7.2.1 Creating Transadmittance Matrix

It needs several steps to get the transadmittance matrices [Ỹ ] and [Ŷ ] mentioned in equation
(7.1). First the MNA matrix of the linear subcircuit (figure 7.1) is created (chapter 3.1) without
the voltage sources S1...SM and without the non-linear components. Note that all nodes must
appear in the matrix, even those where only non-linear components are connected. Then the
transimpedance matrix is derived by exciting one by one the port nodes of the MNA matrix
with unity current. After that the transadmittance matrix is calculated by inverting the tran-
simpedance matrix. Finally the matrices [Ỹ ] and [Ŷ ] are filled with the corresponding elements
of the overall transadmittance matrix.

Note: The MNA matrix of the linear subcircuit has L nodes. Every node, that is connected to
the non-linear subcircuit or/and is connected to a voltage source, is called ”port” in the following
text. So, there are M +N ports. All these ports need to be differential ones, i.e. without ground
reference. Otherwise problemes may occur due to singular matrices when calculating [Ỹ ] or [Ŷ ].

Now this should be described in more detail: By use of the MNA matrix [A], the n-th column of
the transimpedance matrix [Z] should be calculated. The voltage source at port n is connected
to node i (positive terminal) and to node j (negative terminal). This results in the following
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equation. (If port n is referenced to ground, the -1 is simply omitted.)

[A] ·






V1

...
VL




 =
















0
...
1
...
−1
...
0
















← i-th row

← j-th row
(7.3)

After having solved it, Z1,n...ZN+M,n are obtained simply by subtraction of the node voltages:

Zm,n = Vk − Vl (7.4)

Here the voltage source at port m is connected to node k (positive terminal) and to node l
(negative terminal).

The next column of [Z] is obtained by changing the right-hand side of equation (7.3) appropri-
ately. As this has to be done N+M times, it is strongly recommended to use LU decomposition.

As [Ỹ ] is not square, problems encounter by trying to build its inverse matrix. Therefore, the
following procedure is recommended:

• Create the transimpedance matrix for all ports (sources and interconnections).

• Compute the inverse matrix (transadmittance matrix).

• The upper left and upper right corner contains [Ỹ ] and [Ŷ ].

• The lower left and lower right corner contains the transadmittance matrices to calculate
the currents through the sources. They can be used to simplify the AC simulation at the
very end.

One further thing must be mentioned: Because the non-linear components and the sources are
missing in the linear MNA matrix, there are often components that are completely disconnected
from the rest of the circuit. The resulting MNA matrix cannot be solved. To avoid this problem,
shunt each port with a 100Ω resistor, i.e. place a resistor in parallel to each non-linear component
and to each source. The effect of these resistors can be easily removed by subtracting 10mS from
the first main diagonal of the transadmittance matrix.

7.2.2 Starting Values

A difficult question is how to find appropriate start values for the harmonic balance simulation.
It is recommended to first perform a DC analysis and start the algorithm with this result. In
many situation (perhaps always) an even better starting point can be achieved by also using the
result of a linear AC simulation. However with a large signal strength and strong non-linearities,
convergence may still fail. Then, the following procedure might succeed: Perform HB simulation
by applying half of the desired signal levels. If convergence is reached, the result can be used as
start values for the simulation with the full signal levels. Otherwise the amplitude of the signals
can be further decreased in order to repeat the above-mentioned procedure.
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7.2.3 Solution algorithm

To perform a HB simulation, the multi-dimensional, non-linear function 7.2 has to be solved.
One of the best possibilities to do so is the Newton method:

Vn+1 = Vn − JF (Vn)
−1 ·F(Vn) (7.5)

⇒ JF (Vn) ·Vn+1 = JF (Vn) ·Vn − F(Vn) (7.6)

with JF being the Jacobian matrix. DC and transient simulation also use this technique, but
here a problem appears: The derivatives of the component models are not given in frequency
domain. Thus, the Jacobian must be calculated starting at the HB equation 7.2:

JF (V n) =
dF (V )

dV
= Ŷ N×N +

∂IG

∂V
+ j ·Ω∂Q

∂V
= Ŷ N×N + JF,G + j ·Ω ·JF,Q (7.7)

So, two Jacobian matrices have to be built, one for the current IG and one for the charge Q.
Both resulted from a Fourier Transformation. The two operations (Fourier Transformation and
differentiation) are linear and thus, can be exchanged. Hence, the Jacobian matrices are built in
time domain and transformed into frequency domain afterwards.

To obtain a practical algorithm of this procedure, the DFT is best written as matrix equation.
By having a look at equation 15.180 and 15.181, it becomes clear how this works. The harmonic
factors exp(jωktn) build the matrix Γ:

DFT: U(jω) = Γ ·u(t) (7.8)

IDFT: u(t) = Γ−1 ·U(jω) (7.9)

with u and U being the vectors of the time and frequency values, respectively. Now, it is possible
to transform the desired Jacobian matrix into frequency domain:

JF,G =
∂IG

∂V
=

∂(Γ · i)
∂(Γ ·v) = Γ · ∂i

∂v
·Γ−1 (7.10)

Here i is a vector with length K ·N , i.e. first all time values of the first node are inserted, then
all time values of the second node etc. The Jacobi matrix of i is defined as:

JF,G(u) =









∂i1
∂u1

. . .
∂i1
∂un

...
. . .

...
∂in
∂u1

. . .
∂in
∂un









(7.11)

Hence this matrix consists of K ×K blocks (one for each node) that are diagonal matrices with
time values of the derivatives in it. (Components exists that create non-diagonal blocks, but
these are so special ones that they do not appear in this document.)

The formula 7.10 seems to be quite clear, but it has to be pointed out how this works with FFT
algorithm. With Γ−1 = (Γ−1)T (see equation 15.181) and (A ·B)T = BT ·AT , it follows:

JF,G = Γ · ∂i
∂v
·Γ−1 =

(

Γ−1 ·
(

Γ · ∂i
∂v

)T
)T

(7.12)

So, there are two steps to perform an FFT-based transformation of the time domain Jacobian
matrix into the frequency domain Jacobian:
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1. Perform an FFT on every column of the Jacobian and build a new matrix A with this
result, i.e. the first column of A is the FFTed first column of the Jacobian and so on.

2. Perform an IFFT on every row of the matrix A and build a new matrix B with this result,
i.e. the first row of B is the IFFTed first row of A and so on.

As the Fourier transformation has to be applied to diagonal sub-matrices, the whole above-
mentioned process can be performed by one single FFT. This is done by taking the ∂i/∂v values
in a vector J i and calculating:

1

K
·FFT (J i) (7.13)

The result is the first column of JF,G. The second column equals the first one rotated down by
one element. The third column is the second one rotated down by one element etc. A matrix
obeying this structure is called Toeplitz matrix.

So, finally the complete HB Newton iteration step can be written down. Putting 7.2 and 7.7 into
7.6 leads to

JF (Vn) ·Vn+1 = JF,G ·Vn − IG + j ·Ω · (JF,Q ·Vn −Q)− IS (7.14)

This is important to notice, because many non-linear components cannot be processed at every
bias point (see figure 3.5). These components create a new voltage estimate across their nodes,
whereas the new estimated absolute voltages at their nodes are not known. Thus, the term
JF,G ·Vn can only be created in one single step, leading to the vector IG,J . Luckily, this procedure
also saves computation time, as the matrix multiplication need not to be performed. The same
is true for the term JF,Q ·Vn, leading to the vector QJ . So it is:

JF ·Vn+1 = IG,J − IG + j ·Ω · (QJ −Q)− IS (7.15)

7.2.4 Termination Criteria

Frequency components with very different magnitude appear in harmonic balance simulation. In
order to detect when the solver has found an accurate solution, an absolute as well as relative
criteria must be used on all nodes and at all frequencies. The analysis is regarded as finished if
one of the criteria is satisfied.

The absolute and relative criteria write as follows:
∣
∣
∣Ĩn,k + În,k

∣
∣
∣ < εabs ∀ n, k (7.16)

2 ·
∣
∣
∣
∣
∣

Ĩn,k + În,k

Ĩn,k − În,k

∣
∣
∣
∣
∣
< εrel ∀ n, k (7.17)

where Ĩn,k is the current of the linear circuit partition for node n and frequency k and În,k is
the current of the non-linear circuit partition.

7.3 A Symbolic HB Algorithm

In this final section, a harmonic balance algorithm in symbolic language is presented.
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Listing 7.1: symbolic HB algorithm

i n i t ( ) ; // s epa ra t e l i n e a r and non− l i n e a r d e v i c e s
Y = calcTransMatr ix ( ) ; // transadmi t tance matr ix o f l i n e a r c i r c u i t
I s = calcSourceCurrent ( ) ; // source cu r r en t o f l i n e a r s u b c i r c u i t
(v , i , q ) = calculateDC ( ) ; // DC s imu l a t i on as i n i t i a l HB es t ima t e
V = FFT(v ) ; // transform v o l t a g e i n t o f requency domain

loop :
I = FFT( i ) ; // cu r r en t i n t o f requency domain
Q = FFT(q ) ; // charge i n t o f requency domain
E = I s + Y∗V + j ∗Ω∗Q + I ; // HB equa t i on
i f ( abs (E) < Eterm ) break ; // convergence reached ?
JG = mFFT(GJacobian (v ) ) ; // c r ea t e Jacob i ans and transform . . .
JQ = mFFT(QJacobian (v ) ) ; // . . . them in to f requency domain
J = Y + j ∗Ω∗JQ + JG; // c a l c u l a t e o v e r a l l Jacobian
V = V − i n v e r t ( J ) ∗ E; // Newton Raphson i t e r a t i o n s t ep
v = IFFT(V) ; // v o l t a g e i n t o time domain
i = non l inearCurren t ( v ) ; // use component models to g e t . . .
q = nonl inearCharge ( v ) ; // . . . v a l u e s f o r nex t i t e r a t i o n
goto loop ;

Va = inv e r t (Ya) ∗ Ia ; // AC s imu l a t i on to g e t a l l v o l t a g e s

7.4 Large-Signal S-Parameter Simulation

Using harmonic balance techniques, it is also possible to perform an S-parameter simulation in
the large-signal regime. This is called LSSP (large-signal s-parameter). Figure 7.2 shows the
principle. The port n excites the circuit with the simulation frequency f0; meanwhile the power
of all other ports is set to zero. Having voltage and current of the fundamental frequency f0 at
the ports, the S-parameters can be calculated:

Smn =
Um(f0)− Im(f0) ·Zm

Un(f0) + In(f0) ·Zn
·
√

Zn

Zm
(7.18)

n

m

m

nZ
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P
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P
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t m m

I

Figure 7.2: S-parameter from AC voltages and currents

An algorithm in symbolic language should describe the whole LSSP:
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Listing 7.2: symbolic HB algorithm

f o r n=1 to NumberOfPorts {
Set power o f port n to Pn .
Set power o f por t s 6= n to 0 .
Perform Harmonic Balance .

f o r m=1 to NumberOfPorts

Calcu la t e S
mn

accord ing to above−mentioned equat ion .
}

7.5 Autonomous Harmonic Balance

Up to here, only forced circuits were dealt with. That is, the above-mentioned methods can
analyse circuits that are driven by signal sources, but do not create a signal by themselves.
The typical examples are amplifiers and mixers. However, harmonic balance techniques are also
capable of simulating autonomous circuits like oscillators.
This is mostly done in the following way:

1. The user enters an approximate frequency, where the oscillation is expected. (An ac sim-
ulation can be performed to get an idea about that.)

2. The user enters a frequency interval. Somewhere within this interval the oscillation must
appear.

3. The user specifies a circuit node where the oscillation voltage can best be measured.

4. The simulator performs several harmonic balance analyses with different fundamental fre-
quencies in search for the oscillation.
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Chapter 8

Harmonic Balance Noise Analysis

Once a harmonic balance simulation is solved a cyclostationary noise analysis can be performed.
This results in the sideband noise of each harmonic (including DC, i.e. base band noise). The
method described here is based on the principle of small-signal noise. That is, the noise power
is assumed small enough (compared to the signal power and its harmonics) to neglect the higher
order mixing products. This procedure is the standard concept in CAE and allows for a quite
simple and time-saving algorithm: Use the Jacobian to calculate a conversion matrix and then
apply the noise correlation matrix to it. Two important publications for HB noise simulation
exist that were used for the next subsection [9], [10].

Figure 8.1 shows the equivalent circuit for starting the HB noise analysis. At every connection
between linear and non-linear subcircuit, there are two noise current sources: one stemming from
the linear subcircuit and one stemming from the non-linear subcircuit.

i l,1

non−linear

i l,N

i

i

nl,1

nl,N

linear

i,MZ
+

−

S,M

v S,1

v

+

−

Zi,1

Figure 8.1: principle of harmonic balance noise model
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8.1 The Linear Subcircuit

The noise stemming from the linear subcircuit is calculated in two steps:

1. An AC noise analysis (see section 5.2) is performed for the interconnecting nodes of linear
and non-linear subcircuit. This results in the noise-voltage correlation matrix (CZ,lin)N×N .

2. The matrix (CZ,lin)N×N is converted into a noise-current correlation matrix (see section
2.4.2):

(CY,lin)N×N = Ŷ ·CZ,lin · Ŷ
+

(8.1)

where Ŷ is taken from equation 7.2.

Remark: If no explicit noise sources exist in the linear subcircuit, (CZ,lin)N×N can be computed
much faster by using Bosma’s theorem (equation 2.38).

8.2 The Non-Linear Subcircuit

The noise in the non-linear part of the circuit is calculated by using the quasi-static approach,
i.e. for every moment in time the voltages and currents are regarded as a time-dependend bias
point. The noise properties of these bias points are used for the noise calculation.

Remark: It is not clear whether this approach creates a valid result for noise with long-time
correlation (e.g. 1/f noise), too. But up to now, no other methods were proposed and some
publications reported to have achieved reasonable results with this approach and 1/f noise.

Calculating the noise-current correlation matrix (CY,nl)N×N needs several steps. The DC bias
point taken from the result of the HB simulation is the beginning. Its values are the bias used
to build the correlation matrix (CY,DC). Each part is a K ×K diagonal submatrix. The values
are the power-spectral densities (PSD) for each harmonic frequency:

CY,DC(ωR) CY,DC(ω0 + ωR) CY,DC(2 ·ω0 + ωR) . . . (8.2)

where ωR is the desired noise frequency.

The second step creates the cyclostationary modulation that is applied to the DC correlation
matrix. The modulation factor M(t) originates from the current power spectral density Si of
each time step normalized to its DC bias value:

M(t) =
Si (u(t))

Si(uDC)
=

Si (u(t))

CY,DC
(8.3)

Note that this equation only holds if the frequency dependency of Si is the same for every bias,
so that M(t) is frequency independent. This demand is fullfilled for all practical models. So the
above-mentioned equation can be derived for an arbitrary noise frequency ωR.

The third step transforms M(t) into frequency domain. This is done by the procedure described
in equation 7.13, resulting in a Toeplitz matrix.
The fourth and final step calculates the desired correlation matrix:

(CY,nl) = M · (CY,DC) ·M+ (8.4)
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8.3 Noise Conversion

As the noise of linear and non-linear components are uncorrelated, the noise-voltage correlation
matrix at the interconnecting ports can now be calculated:

CZ = J−1
F · (CY,lin +CY,nl) · (J−1

F )+ (8.5)

here J−1
F is the inverse of the Jacobian matrix taken from the last HB iteration step (where it

already was inverted). Note that it needs to be the precise Jacobian matrix. I.e. it must be
taken from an iteration step very close to the solution, without any convergence helpers, and
with a precise FFT algorithm (e.g. the multi-dimensional FFT).

Finally, the noise voltages from the interconnecting ports have to be used to compute all other
noise voltages. This is straight forward:

1. Convert the noise-voltage correlation matrix into the noise-current correlation matrix.

2. Expand the matrix to the whole circuit, i.e. fill it up with zeros.

3. Perform an AC noise analysis for all nodes of interest.

The whole algorithm has to be performed for every noise frequency ωR of interest.

8.4 Phase and Amplitude Noise

The harmonic balance noise analysis calculates the noise power spectral density Suu,k(ωR) at
the noise frequency ωR of the k-th harmonic. The SSB phase and amplitude noise normalized
to the carrier can be obtained by using the symmetry between positive and negative harmonic
numbers:

〈
ΦkΦ

∗
−k

〉
=

Suu,k + Suu,−k − 2 ·Re (CZ,k,−k · exp(−j · 2 ·φk))

|Uk|2
(8.6)

〈
AkA

∗
−k

〉
=

Suu,k + Suu,−k + 2 ·Re (CZ,k,−k · exp(−j · 2 ·φk))

|Uk|2
(8.7)

with Uk = |Uk| · exp(j ·φk) being the k-th harmonic.
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Chapter 9

Linear devices

As the MNA matrix is the Y-parameter matrix of the whole circuit, components that are defined
by Y-parameters can be easily inserted by adding these parameters to the MNA matrix elements
(so-called ’stamping’).

9.1 Extended MNA stamping

Components that cannot be defined by Y-parameters need to add additional columns and rows
to the MNA matrix representation.

9.1.1 Z-parameters

Components defined by Z-parameters can be added in the following way (example for a 2-port).
It is easily extendable for any number of ports.







. . 1 0

. . 0 1
−1 0 Z11 Z12

0 −1 Z21 Z22






·







V1

V2

J1
J2






=







I1
I2
0
0







(9.1)

9.1.2 S-parameters

Components that are characterized by S-parameters (normalized to Z0) can be put into the MNA
matrix by the following scheme (example for a 3-port). It is easily extendable for any number of
ports.











. . . 1 0 0

. . . 0 1 0

. . . 0 0 1
S11 − 1 S12 S13 Z0 · (S11 + 1) Z0 ·S12 Z0 ·S13

S21 S22 − 1 S23 Z0 ·S21 Z0 · (S22 + 1) Z0 ·S23

S31 S32 S33 − 1 Z0 ·S31 Z0 ·S32 Z0 · (S33 + 1)











·











V1

V2

V3

J1
J2
J3











=











I1
I2
I3
0
0
0











(9.2)
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9.1.3 H-parameters

According to eqn. (15.12) the MNA matrix for a 2-port H-parameter matrix can be written as:





. . 1

. H22 H21

−1 H12 H11



 ·





V1

V2

J1



 =





I1
I2
0



 (9.3)

9.1.4 G-parameters

According to eqn. (15.13) the MNA matrix for a 2-port G-parameter matrix can be written as:





G11 . G12

. . 1
G21 −1 G22



 ·





V1

V2

J2



 =





I1
I2
0



 (9.4)

9.1.5 A-parameters

According to eqn. (15.14) the MNA matrix for a 2-port A-parameter matrix can be written as:





. A21 A22

. . −1
−1 A11 A12



 ·





V1

V2

J2



 =





I1
I2
0



 (9.5)

9.1.6 T-parameters

According to eqn. (15.16) the MNA matrix for a 2-port T-parameter matrix can be written as:







. . 1 0

. . 0 1
−1 T12 + T11 −Z0 Z0 · (T12 − T11)
−1 T22 + T21 +Z0 Z0 · (T22 − T21)






·







V1

V2

J1
J2






=







I1
I2
0
0







(9.6)

9.2 Resistor

For DC and AC simulation an ideal resistor with resistance R yields:

Y =
1

R
·
(

1 −1
−1 1

)

(9.7)

The noise correlation matrix at temperature T yields:

(CY ) =
4 · k ·T

R
·
(

1 −1
−1 1

)

(9.8)

The scattering parameters normalized to impedance Z0 writes as follows.

S11 = S22 =
R

2 ·Z0 +R
(9.9)

S12 = S21 = 1− S11 =
2 ·Z0

2 ·Z0 +R
(9.10)
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Being on temperature T , the noise wave correlation matrix writes as follows.

(C) = k ·T · 4 ·R ·Z0

(2 ·Z0 +R)2
·
(

1 −1
−1 1

)

(9.11)

The noise wave correlation matrix of a parallel resistor with resistance R writes as follows.

(C) = k ·T · 4 ·R ·Z0

(2 ·R+ Z0)2
·
(
1 1
1 1

)

(9.12)

The noise wave correlation matrix of a grounded resistor with resistance R is a matrix consisting
of one element and writes as follows.

(C) = k ·T · 4 ·R ·Z0

(R+ Z0)2
(9.13)

9.3 Capacitor

During DC simulation the capacitor is an open circuit. Thus, its MNA entries are all zero.

During AC simulation the y-parameter matrix of an ideal capacitor with the capacitance C writes
as follows.

Y =

(
+jωC −jωC
−jωC +jωC

)

(9.14)

The scattering parameters (normalized to Z0) of an ideal capacitor with capacitance C writes as
follows.

S11 = S22 =
1

2 ·Z0 · jωC + 1
(9.15)

S12 = S21 = 1− S11 (9.16)

An ideal capacitor is noise free. Its noise correlation matrices are, therefore, zero.

9.4 Inductor

During DC simulation an inductor is a short circuit, thus, its MNA matrix entries need an
additional row and column.





. . +1

. . −1
+1 −1 0



 ·





V1

V2

Ibr



 =





I1
I2
0



 =





0
0
0



 (9.17)

During AC simulation the Y-parameter matrix of an ideal inductor with the inductance L writes
as follows.

Y =






+
1

jωL
− 1

jωL

− 1

jωL
+

1

jωL




 (9.18)

The scattering parameters of an ideal inductor with inductance L writes as follows.

S11 = S22 =
jωL

2 ·Z0 + jωL
(9.19)

S12 = S21 = 1− S11 (9.20)

An ideal inductor is noise free.
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9.5 DC Block

A DC block is a capacitor with an infinite capacitance. During DC simulation the DC block is
an open circuit. Thus, its MNA entries are all zero.

The MNA matrix entries of a DC block correspond to an ideal short circuit during AC analysis
which is modeled by a voltage source with zero voltage.





. . +1

. . −1
+1 −1 0



 ·





V1

V2

Ibr



 =





I1
I2
0



 =





0
0
0



 (9.21)

The scattering parameters writes as follows.

(S) =

(
0 1
1 0

)

(9.22)

A DC block is noise free. A model for transient simulation does not exist. It is common practice
to model it as a capacitor with finite capacitance whose value is entered by the user.

9.6 DC Feed

A DC feed is an inductor with an infinite inductance. The MNA matrix entries of a DC feed
correspond to an ideal short circuit during DC analysis:





. . +1

. . −1
+1 −1 0



 ·





V1

V2

Ibr



 =





I1
I2
0



 =





0
0
0



 (9.23)

During AC simulation the DC feed is an open circuit. Thus, its MNA entries are all zero.

The scattering parameters writes as follows.

(S) =

(
1 0
0 1

)

(9.24)

A DC feed is noise free. A model for transient simulation does not exist. It is common practice
to model it as an inductor with finite inductance whose value is entered by the user.

9.7 Bias T

An ideal bias t is a combination of a DC block and a DC feed (fig. 9.1). During DC simulation
the MNA matrix of an ideal bias t writes as follows:







. . . 0

. . . 1

. . . −1
0 1 −1 0






·







V1

V2

V3

Iout






=







I1
I2
I3
0






=







0
0
0
0







(9.25)

91



3

1 2

Figure 9.1: bias t

The MNA entries of the bias t during AC analysis write as follows.







. . . −1

. . . 1

. . . 0
−1 1 0 0






·







V1

V2

V3

Iout






=







I1
I2
I3
0






=







0
0
0
0







(9.26)

The scattering parameters writes as follows.

(S) =





0 1 0
1 0 0
0 0 1



 (9.27)

A bias t is noise free. A model for transient simulation does not exist. It is common practice to
model it as an inductor and a capacitance with finite values which are entered by the user.

9.8 Transformer

The two winding ideal transformer, as shown in fig. 9.2, is determined by the following equation
which introduces one more unknown in the MNA matrix.

T

3

21

4

I t I t

1T

Figure 9.2: ideal two winding transformer

T · (V2 − V3) = V1 − V4 → V1 − T ·V2 + T ·V3 − V4 = 0 (9.28)

The new unknown variable It must be considered by the four remaining simple equations.

I1 = −It I2 = T · It I3 = −T · It I4 = It (9.29)
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And in matrix representation this is for DC and for AC simulation:









. . . . −1

. . . . T

. . . . −T

. . . . 1
1 −T T −1 0









·









V1

V2

V3

V4

It









=









I1
I2
I3
I4
0









=









0
0
0
0
0









(9.30)

It is noticeable that the additional row (part of the C matrix) and the corresponding column (part
of the B matrix) are transposed to each other. When considering the turns ratio T being complex
introducing an additional phase the transformer can be used as phase-shifting transformer. Both
the vectors must be conjugated complex transposed in this case.

Using the port numbers depicted in fig. 9.2, the scattering parameters of an ideal transformer
with voltage transformation ratio T (number of turns) writes as follows.

S14 = S22 = S33 = S41 =
1

T 2 + 1
(9.31)

S12 = −S13 = S21 = −S24 = −S31 = S34 = −S42 = S43 = T ·S22 (9.32)

S11 = S23 = S32 = S44 = T ·S12 (9.33)

An ideal transformer is noise free.

9.9 Symmetrical transformer

The ideal symmetrical transformer, as shown in fig. 9.3, is determined by the following equations
which introduce two more unknowns in the MNA matrix.

T

4

3

2

1

6
5

1

2

I

I

T1

I T2

T

T

1

Figure 9.3: ideal three winding transformer

T1 · (V2 − V3) = V1 − V6 → V1 − T1 ·V2 + T1 ·V3 − V6 = 0 (9.34)

T2 · (V2 − V3) = V5 − V4 → −T2 ·V2 + T2 ·V3 − V4 + V5 = 0 (9.35)
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The new unknown variables IT1 and IT2 must be considered by the six remaining simple equa-
tions.

I2 = T1 · IT1 + T2 · IT2 I3 = −T1 · IT1 − T2 · IT2 (9.36)

I1 = −IT1 I4 = IT2 I5 = −IT2 I6 = IT1 (9.37)

The matrix representation needs to be augmented by two more new rows and their corresponding
columns. For DC and AC simulation it is:















. . . . . . −1 0

. . . . . . T1 T2

. . . . . . −T1 −T2

. . . . . . 0 1

. . . . . . 0 −1

. . . . . . 1 0
1 −T1 T1 0 0 −1 0 0
0 −T2 T2 −1 1 0 0 0















·






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IT1

IT2















=















I1
I2
I3
I4
I5
I6
0
0















=















0
0
0
0
0
0
0
0















(9.38)

Using the port numbers depicted in fig. 9.3, the scattering parameters of an ideal, symmetrical
transformer with voltage transformation ratio (number of turns) T1 and T2, respectively, writes
as follows.

denom = 1 + T 2
1 + T 2

2 (9.39)

S11 = S66 =
T 2
1

denom
S16 = S61 = 1− S11 (9.40)

S44 = S55 =
T 2
2

denom
S45 = S54 = 1− S44 (9.41)

S22 = S33 =
1

denom
S23 = S32 = 1− S22 (9.42)

S12 = S21 = −S13 = −S31 = −S26 = −S62 = S36 = S63 =
T1

denom
(9.43)

− S24 = −S42 = S25 = S52 = S34 = S43 = −S35 = −S53 =
T2

denom
(9.44)

− S14 = −S41 = S15 = S51 = S46 = S64 = −S56 = −S65 =
T1 ·T2

denom
(9.45)

An ideal symmetrical transformer is noise free.

9.10 Non-ideal transformer

Many simulators support non-ideal transformers (e.g. mutual inductor in SPICE). An often used
model consists of finite inductances and an imperfect coupling (straw inductance). This model
has three parameters: Inductance of the primary coil L1, inductance of the secondary coil L2

and the coupling factor k = 0...1.
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9.10.1 Mutual inductors with two or three of inductors

This model can be replaced by the equivalent circuit depicted in figure 9.4. The values are
calculated as follows.

turn ratio: T =

√

L1

L2
(9.46)

mutual inductance: M = k ·L1 (9.47)

primary inductance: L1,new = L1 −M = L1 · (1 − k) (9.48)

secondary inductance: L2,new = L2 −
M

T 2
= L2 · (1− k) (9.49)

3

1,new 2,new
1 2

4

LL

M

T:1

Figure 9.4: equivalent circuit of non-ideal transformer

The Y-parameters of this component are:

Y11 = Y44 = −Y41 = −Y14 =
1

jω ·L1 · (1− k2)
(9.50)

Y22 = Y33 = −Y23 = −Y32 =
1

jω ·L2 · (1− k2)
(9.51)

Y13 = Y31 = Y24 = Y42 = −Y12 = −Y21 = −Y34 = −Y43 =
k

jω ·
√
L1 ·L2 · (1− k2)

(9.52)

Furthermore, its S-parameters are:

D = (k2 − 1) · ω
2 ·L1 ·L2

2 ·Z0
+ jωL1 + jωL2 + 2 ·Z0 (9.53)

S14 = S41 =
jωL2 + 2 ·Z0

D
(9.54)

S11 = S44 = 1− S14 (9.55)

S23 = S32 =
jωL1 + 2 ·Z0

D
(9.56)

S22 = S33 = 1− S23 (9.57)

S12 = −S13 = S21 = −S24 = −S31 = S34 = −S42 = S43 =
jω · k ·

√
L1 ·L2

D
(9.58)
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Also including an ohmic resistance R1 and R2 for each coil, leads to the following Y-parameters:

Y11 = Y44 = −Y41 = −Y14 =
1

jω ·L1 ·
(

1− k2 · jωL2

jωL2 +R2

)

+R1

(9.59)

Y22 = Y33 = −Y23 = −Y32 =
1

jω ·L2 ·
(

1− k2 · jωL1

jωL1 +R1

)

+R2

(9.60)

Y13 = Y31 = Y24 = Y42 = −Y12 = −Y21 = −Y34 = −Y43 = k · jω
√
L1 ·L2

jω ·L2 +R2
·Y11 (9.61)

Building the S-parameters leads to too large equations. Numerically converting the Y-parameters
into S-parameters is therefore recommended.

The MNA matrix entries during DC analysis and the noise correlation matrices of this trans-
former are:

(Y ) =







1/R1 0 0 −1/R1

0 1/R2 −1/R2 0
0 −1/R2 1/R2 0

−1/R1 0 0 1/R1







(9.62)

(CY ) = 4 · k ·T ·







1/R1 0 0 −1/R1

0 1/R2 −1/R2 0
0 −1/R2 1/R2 0

−1/R1 0 0 1/R1







(9.63)

(CS) = 4 · k ·T ·Z0 ·








R1

(2 ·Z0+R1)2
0 0 − R1

(2 ·Z0+R1)2

0 R2

(2 ·Z0+R2)2
− R2

(2 ·Z0+R2)2
0

0 − R2

(2 ·Z0+R2)2
R2

(2 ·Z0+R2)2
0

− R1

(2 ·Z0+R1)2
0 0 R1

(2 ·Z0+R1)2








(9.64)

A transformer with three coupled inductors has three coupling factors k12, k13 and k23. Its
Y-parameters write as follows (port numbers are according to figure 9.3).

A = jω · (1 − k212 − k213 − k223 + 2 · k12 · k13 · k23) (9.65)

Y11 = Y66 = −Y16 = −Y61 =
1− k223
L1 ·A

(9.66)

Y22 = Y33 = −Y23 = −Y32 =
1− k212
L3 ·A

(9.67)

Y44 = Y55 = −Y45 = −Y54 =
1− k213
L2 ·A

(9.68)

Y12 = Y21 = Y36 = Y63 = −Y13 = −Y31 = −Y26 = −Y62 =
k12 · k23 − k13√

L1 ·L3 ·A
(9.69)

Y15 = Y51 = Y46 = Y64 = −Y14 = −Y41 = −Y56 = −Y65 =
k13 · k23 − k12√

L1 ·L2 ·A
(9.70)

Y25 = Y52 = Y43 = Y34 = −Y24 = −Y42 = −Y53 = −Y35 =
k12 · k13 − k23√

L2 ·L3 ·A
(9.71)
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9.10.2 Mutual inductors with any number of inductors

A more general approach for coupled inductors can be obtained by using the induction law:

VL = jωL · IL + jω ·
N∑

n=1

kn ·
√

L ·Ln · IL,n (9.72)

where VL and IL is the voltage across and the current through the inductor, respectively. L is its
inductance. The inductor is coupled with N other inductances Ln. The corresponding coupling
factors are kn and IL,n are the currents through the inductors.

Realizing this approach with the MNA matrix is straight forward: Every inductance L needs
an additional matrix row. The corresponding element in the D matrix is jωL. If two inductors
are coupled the cross element in the D matrix is jωk ·

√
L1 ·L2. For two coupled inductors this

yields:











. . . . +1 0

. . . . −1 0

. . . . 0 +1

. . . . 0 −1
+1 −1 0 0 jωL1 jωk ·

√
L1 ·L2

0 0 +1 −1 jωk ·
√
L1 ·L2 jωL2











·











V1

V2

V3

V4

Ibr1
Ibr2











=











I1
I2
I3
I4
0
0











=











0
0
0
0
0
0











(9.73)

Obviously, this approach has an advantage: It also works for zero inductances and for unity
coupling factors and is extendible for any number of inductors. It has the disadvantage that it
enlarges the MNA matrix.

The S-parameter matrix of this component is obtained by converting the Z-parameter matrix of
the component. The Z-parameter matrix can be constructed using the following scheme: The
self-inductances on the main diagonal and the mutual inductances in the off-diagonal entries.

(Z ′) = jω ·
[

L1 k ·
√
L1 ·L2

k ·
√
L1 ·L2 L2

]

(9.74)

This matrix representation does not contain the second terminals of the inductances. That’s why
the Z-parameter matrix must be converted into the Y-parameter matrix representation which is
then extended to contain the additional terminals.

(Z ′)→ (Y ′) =

[
y11 y12
y21 y22

]

→ (Y ) =







+y11 −y11 +y12 −y12
−y11 +y11 −y12 +y12
+y21 −y21 +y22 −y22
−y21 +y21 −y22 +y22







(9.75)

The resulting Y-parameter matrix can be converted into the appropriate S-parameters numeri-
cally by eqn. (15.7).

9.11 Attenuator

The ideal attenuator with (power) attenuation L is frequency independent and the model is valid
for DC and for AC simulation. It is determined by the following Z parameters.
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Z11 = Z22 = Zref ·
L+ 1

L− 1
(9.76)

Z12 = Z21 = Zref ·
2 ·
√
L

L − 1
(9.77)

The Z parameter representation is not very practical as new lines in the MNA matrix have to
be added. More useful are the Y parameters.

(Y ) =
1

Zref · (L− 1)
·
(

L+ 1 −2 ·
√
L

−2 ·
√
L L+ 1

)

(9.78)

Attenuator with (power) attenuation L, reference impedance Zref and temperature T :

(CY ) = 4 · k ·T ·Re (Y ) =
4 · k ·T

Zref · (L− 1)
·
(

L+ 1 −2 ·
√
L

−2 ·
√
L L+ 1

)

(9.79)

The scattering parameters and noise wave correlation matrix of an ideal attenuator with (power)
attenuation L (loss) (or power gain G = 1/L) in reference to the impedance Zref writes as
follows.

S11 = S22 =
r · (L− 1)

L− r2
=

r · (1−G)

1− r2 ·G (9.80)

S12 = S21 =

√
L · (1− r2)

L− r2
=

√
G · (1 − r2)

1− r2 ·G (9.81)

(C) = k ·T · (L− 1) · (r2 − 1)

(L − r2)2
·
(
−r2 − L 2 · r

√
L

2 · r
√
L −r2 − L

)

(9.82)

with

r =
Zref − Z0

Zref + Z0
(9.83)

9.12 Amplifier

An ideal amplifier increases signal strength from input to output and blocks all signals flowing
into the output. The ideal amplifier is an isolator with voltage gain G and is determined by the
following Z or Y parameters (valid for DC and AC simulation).

Z11 = Z1 Z12 = 0 (9.84)

Z21 = 2 ·
√

Z1 ·Z2 ·G Z22 = Z2 (9.85)

Y11 =
1

Z1
Y12 = 0 (9.86)

Y21 = − 2 ·G√
Z1 ·Z2

Y22 =
1

Z2
(9.87)

With the reference impedance of the input Z1 and the one of the output Z2 and the voltage
amplification G, the scattering parameters of an ideal amplifier write as follows.

S11 =
Z1 − Z0

Z1 + Z0
(9.88)
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S12 = 0 (9.89)

S22 =
Z2 − Z0

Z2 + Z0
(9.90)

S21 =
4 ·Z0 ·

√
Z1 ·Z2 ·G

(Z1 + Z0) · (Z2 + Z0)
(9.91)

9.13 Isolator

An isolator is a one-way two-port, transporting incoming waves lossless from the input (port 1)
to the output (port 2), but dissipating all waves flowing into the output. The ideal isolator with
reference impedances Z1 (input) and Z2 (output) is determined by the following Z parameters
(for DC and AC simulation).

Z11 = Z1 Z12 = 0 (9.92)

Z21 = 2 ·
√

Z1 ·Z2 Z22 = Z2 (9.93)

A more useful MNA representation is with Y parameters.

(Y ) =






1

Z1
0

−2√
Z1 ·Z2

1

Z2




 (9.94)

Isolator with reference impedance Z1 (input) and Z2 (output) and temperature T :

(CY ) = 4 · k ·T ·






1

Z1
0

−2√
Z1 ·Z2

1

Z2




 (9.95)

With the reference impedance of the input Z1 and the one of the output Z2, the scattering
parameters of an ideal isolator writes as follows.

S11 =
Z1 − Z0

Z1 + Z0
(9.96)

S12 = 0 (9.97)

S22 =
Z2 − Z0

Z2 + Z0
(9.98)

S21 =
√

1− (S11)2 ·
√

1− (S22)2 (9.99)

Being on temperature T , the noise wave correlation matrix of an ideal isolator with reference
impedance Z1 and Z2 (input and output) writes as follows.

(C) =
4 · k ·T ·Z0

(Z1 + Z0)2
·







Z1

√
Z1 ·Z2 ·

Z0 − Z1

Z0 + Z2

√
Z1 ·Z2 ·

Z0 − Z1

Z0 + Z2
Z2 ·

(
Z1 − Z0

Z2 + Z0

)2







(9.100)
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9.14 Circulator

A circulator is a 3-port device, transporting incoming waves lossless from port 1 to port 2, from
port 2 to port 3 and from port 3 to port 1. In all other directions, there is no energy flow. The
ideal circulator cannot be characterized with Z or Y parameters, because their values are partly
infinite. But implementing with S parameters is practical (see equation 9.2).

With the reference impedances Z1, Z2 and Z3 for the ports 1, 2 and 3 the scattering matrix of
an ideal circulator writes as follows.

denom = 1− r1 · r2 · r3 (9.101)

r1 =
Z0 − Z1

Z0 + Z1
, r2 =

Z0 − Z2

Z0 + Z2
, r3 =

Z0 − Z3

Z0 + Z3
(9.102)

S11 =
r2 · r3 − r1
denom

, S22 =
r1 · r3 − r2
denom

, S33 =
r1 · r2 − r3
denom

(9.103)

S12 =

√

Z2

Z1
· Z1 + Z0

Z2 + Z0
· r3 · (1− r21)

denom
, S13 =

√

Z3

Z1
· Z1 + Z0

Z3 + Z0
· 1− r21
denom

(9.104)

S21 =

√

Z1

Z2
· Z2 + Z0

Z1 + Z0
· 1− r22
denom

, S23 =

√

Z3

Z2
· Z2 + Z0

Z3 + Z0
· r1 · (1 − r22)

denom
(9.105)

S31 =

√

Z1

Z3
· Z3 + Z0

Z1 + Z0
· r2 · (1− r23)

denom
, S32 =

√

Z2

Z3
· Z3 + Z0

Z2 + Z0
· 1− r23
denom

(9.106)

An ideal circulator is noise free.

9.15 Phase shifter

A phase shifter alters the phase of the input signal independently on the frequency. As a result
the relation between input and output signal is complex. To get the DC model, some simulators
use the AC formulas and create the real part or the magnitude. This procedure has no physical
reason, because it uses an operation that is not defined for DC. But one can think in the following
direction: As a DC quantity is constant, it doesn’t change if it is phase-shifted. (An AC quantity
doesn’t change its magnitude, too.) Or to say it with other words, for a DC simulation the phase
to shift is always zero. That leads to the result that the phase shifter is a short circuit for DC.
So, this is true for all reference impedances.

For an AC simulation, the Z-parameters of a phase shifter writes as follows.

Z11 = Z22 =
j ·Zref

tan(φ)
(9.107)

Z12 = Z21 =
j ·Zref

sin(φ)
(9.108)

The admittance parameters required for the AC analysis result in

Y11 = Y22 =
j

Zref · tan (φ)
(9.109)

Y12 = Y21 =
1

j ·Zref · sin (φ)
(9.110)
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where φ denotes the actual phase shift of the device. For a zero phase shift (φ = 0) neither the
Z- nor the Y-parameters are defined. That is why during AC analysis a phase shifter with zero
phase shift represents an ideal short circuit regardless its reference impedance.

The MNA matrix entries of an ideal short circuit during AC and DC analysis correspond to a
voltage source with zero voltage. The complete MNA matrix representation writes as follows





. . +1

. . −1
+1 −1 0



 ·





V1

V2

Ibr



 =





I1
I2
0



 =





0
0
0



 (9.111)

whence Ibr denote the branch current through the voltage source.

The scattering parameters of an ideal phase shifter with phase shift φ and reference impedance
Zref writes as follows.

r =
Zref − Z0

Zref + Z0
(9.112)

S11 = S22 =
r · (1− exp (j · 2φ))
1− r2 · exp (j · 2φ) (9.113)

S12 = S21 =
(1 − r2) · exp (j ·φ)
1− r2 · exp (j · 2φ) (9.114)

An ideal phase shifter is noise free.

9.16 Coupler

According to the port numbers in fig. 9.5 the Y-parameters of a coupler write as follows.

Y11 = Y22 = Y33 = Y44 =
A · (2−A)

D
(9.115)

Y12 = Y21 = Y34 = Y43 =
−A ·B

D
(9.116)

Y13 = Y31 = Y24 = Y42 =
C · (A− 2)

D
(9.117)

Y14 = Y41 = Y23 = Y32 =
B ·C
D

(9.118)

(9.119)

with

A = k2 · (1 + exp (j · 2φ)) (9.120)

B = 2 ·
√

1− k2 (9.121)

C = 2 · k · exp (j ·φ) (9.122)

D = Zref ·
(
A2 − C2

)
(9.123)

(9.124)

whereas 0 < k < 1 denotes the coupling factor, φ the phase shift of the coupling path and Zref

the reference impedance. The coupler can also be used as hybrid by setting k = 1/
√
2. For a 90
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degree hybrid, for example, set φ to π/2. Note that for most couplers no real DC model exists.
Taking the real part of the AC matrix often leads to non-logical results. Thus, it is better to
model the coupler for DC by making a short between port 1 and port 2 and between port 3 and
port 4. The rest should be an open. This leads to the following MNA matrix.











. . . . 1 0

. . . . −1 0

. . . . 0 1

. . . . 0 −1
1 −1 0 0 0 0
0 0 1 −1 0 0











·











V1

V2

V3

V4

Iout1
Iout4











=











I1
I2
I3
I4
0
0











=











0
0
0
0
0
0











(9.125)

4 3

21

Figure 9.5: ideal coupler device

The scattering parameters of a coupler are:

S11 = S22 = S33 = S44 = 0 (9.126)

S14 = S23 = S32 = S41 = 0 (9.127)

S12 = S21 = S34 = S43 =
√

1− k2 (9.128)

S13 = S31 = S24 = S42 = k · exp (jφ) (9.129)

whereas 0 < k < 1 denotes the coupling factor, φ the phase shift of the coupling path. Extending
them for an arbitrary reference impedance Zref , they already become quite complex:

r =
Z0 − Zref

Z0 + Zref
(9.130)

A = k2 · (exp (j · 2φ) + 1) (9.131)

B = r2 · (1−A) (9.132)

C = k2 · (exp (j · 2φ)− 1) (9.133)

D = 1− 2 · r2 · (1 + C) +B2 (9.134)

(9.135)

S11 = S22 = S33 = S44 = r · A ·B + C + 2 · r2 · k2 · exp (j · 2φ)
D

(9.136)

S12 = S21 = S34 = S43 =
√

1− k2 ·
(
1− r2

)
· (1−B)

D
(9.137)

S13 = S31 = S24 = S42 = k · exp (jφ) ·
(
1− r2

)
· (1 +B)

D
(9.138)

S14 = S23 = S32 = S41 = 2 ·
√

1− k2 · k · exp (jφ) · r ·
(
1− r2

)

D
(9.139)

An ideal coupler is noise free.
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9.17 Gyrator

A gyrator is an impedance inverter. Thus, for example, it converts a capacitance into an induc-
tance and vice versa. The ideal gyrator, as shown in fig. 9.6, is determined by the following
equations which introduce two more unknowns in the MNA matrix.

I in I out
21

4

R

3

Figure 9.6: ideal gyrator

Iin =
1

R
· (V2 − V3) → 1

R
·V2 −

1

R
·V3 − Iin = 0 (9.140)

Iout = −
1

R
· (V1 − V4) → − 1

R
·V1 +

1

R
·V4 − Iout = 0 (9.141)

The new unknown variables Iout and Iin must be considered by the four remaining simple equa-
tions.

I1 = Iin I2 = Iout I3 = −Iout I4 = −Iin (9.142)

As can be seen, a gyrator consists of two cross-connected VCCS (section 9.20.1). Hence, its
y-parameter matrix is:

(Y ) =







0 1
R − 1

R 0
− 1

R 0 0 1
R

1
R 0 0 − 1

R
0 − 1

R
1
R 0







(9.143)

The scattering matrix of an ideal gyrator with the ratio R writes as follows.

r =
R

Zref
=

1

G ·Zref
(9.144)

S11 = S22 = S33 = S44 =
R2

4 ·Z2
ref +R2

=
r2

r2 + 4
(9.145)

S14 = S23 = S32 = S41 = 1− S11 (9.146)

S12 = −S13 = −S21 = S24 = S31 = −S34 = −S42 = S43 =
2 · r

r2 + 4
(9.147)
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9.18 Voltage and current sources

For an AC analysis, DC sources are short circuit (voltage source) or open circuit (current source),
respectively. Accordingly, for a DC analysis, AC sources are short circuit (voltage source) or
open circuit (current source), respectively. As these sources have no internal resistance, they are
noisefree.

The MNA matrix of a current source is (with short circuit current I0 flowing into node 1 and
out of node 2):

[
. .
. .

]

·
[
V1

V2

]

=

[
I0
−I0

]

(9.148)

The MNA matrix of a voltage source is (with open circuit voltage U0 across node 1 to node 2):





. . 1

. . −1
1 −1 0



 ·





V1

V2

Iin



 =





0
0
U0



 (9.149)

The MNA matrix of a power source is (with internal resistance R and available power P ):






1

R
− 1

R

− 1

R

1

R




 ·

[
V1

V2

]

=







√

8 ·P
R

−
√

8 ·P
R







(9.150)

The factor ”8” is because of:

• transforming peak current value into effective value (factor two)

• at power matching the internal resistance dissipates the same power as the load (gives
factor four).

The noise current correlation matrix of a power source equals the one of a resistor with resistance
R.

All voltage sources (AC and DC) are short circuits and therefore their S-parameter matrix equals
the one of the DC block. All current sources are open circuits and therefore their S-parameter
matrix equals the one of the DC feed.

9.19 Noise sources

To implement the frequency dependencies of all common noise PSDs the following equation can
be used.

PSD =
PSD0

a+ b · f c
(9.151)

Where f is frequency and a, b, c are the parameters. The following PSDs appear in electric
devices.

white noise (thermal noise, shot noise): a = 0, b = 1, c = 0
pink noise (flicker noise): a = 0, b = 1, c = 1
Lorentzian PSD (generation-recombination noise): a = 1, b = 1/f2

c , c = 2
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9.19.1 Noise current source

Noise current source with a current power spectral density of cPSD:

(CY ) = cPSD ·
(

1 −1
−1 1

)

(9.152)

The MNA matrix entries for DC and AC analysis are all zero.

The noise wave correlation matrix of a noise current source with current power spectral density
cPSD and its S parameter matrix write as follows.

(C) = cPSD ·Z0 ·
(

1 −1
−1 1

)

(S) =

(
1 0
0 1

)

(9.153)

9.19.2 Noise voltage source

A noise voltage source (voltage power spectral density vPSD) cannot be modeled with the noise
current matrix. That is why one has to use a noise current source (current power spectral density
cPSD) connected to a gyrator (transimpedance R) satisfying the equation

vPSD = cPSD ·R2 (9.154)

Figure 9.7 shows an example.

I1
i=1e-6

V1
u=1e-6

X1
R=1

Figure 9.7: noise voltage source (left-hand side) and its equivalent circuit (right-hand side)

The MNA matrix entries of the above construct (gyrator ratio R = 1) is similiar to a voltage
source with zero voltage.





. . −1

. . 1
1 −1 0



 ·





V1

V2

Ix



 =





I1
I2
0



 =





0
0
0



 (9.155)

The appropriate noise current correlation matrix yields:

(CY ) = cPSD ·





0 0 0
0 0 0
0 0 1



 (9.156)

The noise wave correlation matrix of a noise voltage source with voltage power spectral density
vPSD and its S parameter matrix write as follows.

(C) =
vPSD

4 ·Z0
·
(

1 −1
−1 1

)

(S) =

(
0 1
1 0

)

(9.157)
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9.19.3 Correlated noise sources

For two correlated noise current sources the (normalized) correlation coefficientK must be known
(with |K| = 0 . . . 1). If the first noise source has the current power spectral density Si1 and is
connected to node 1 and 2, and if furthermore the second noise source has the spectral density
Si2 and is connected to node 3 and 4, then the correlation matrix writes:

(CY ) =







Si1 −Si1 K ·
√
Si1 ·Si2 −K ·

√
Si1 ·Si2

−Si1 Si1 −K ·
√
Si1 ·Si2 K ·

√
Si1 ·Si2

K ·
√
Si1 ·Si2 −K ·

√
Si1 ·Si2 Si2 −Si2

−K ·
√
Si1 ·Si2 K ·

√
Si1 ·Si2 −Si2 Si2







(9.158)

The MNA matrix entries for DC and AC analysis are all zero.

The noise wave correlation matrix of two correlated noise current sources with current power
spectral densities Si1 and Si2 and correlation coefficient K writes as follows.

(C) = Z0 ·







Si1 −Si1 K ·
√
Si1 ·Si2 −K ·

√
Si1 ·Si2

−Si1 Si1 −K ·
√
Si1 ·Si2 K ·

√
Si1 ·Si2

K ·
√
Si1 ·Si2 −K ·

√
Si1 ·Si2 Si2 −Si2

−K ·
√
Si1 ·Si2 K ·

√
Si1 ·Si2 −Si2 Si2







(9.159)

(S) =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







(9.160)

For two correlated noise voltage sources two extra rows and columns are needed in the MNA
matrix:











. . . . −1 0

. . . . 1 0

. . . . 0 −1

. . . . 0 1
1 −1 0 0 0 0
0 0 1 −1 0 0











·











V1

V2

V3

V4

Ix1
Ix2











=











I1
I2
I3
I4
0
0











=











0
0
0
0
0
0











(9.161)

The appropriate noise current correlation matrix (with the noise voltage power spectral densities
Sv1 and Sv2 and the correlation coefficient K) yields:

(CY ) =











0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 Sv1 K ·

√
Sv1 ·Sv2

0 0 0 0 K ·
√
Sv1 ·Sv2 Sv2











(9.162)

The noise wave correlation matrix of two correlated noise voltage sources with voltage power
spectral densities Sv1 and Sv2 and correlation coefficient K and its S parameter matrix write as
follows.
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(C) =
1

4 ·Z0
·







Sv1 −Sv1 K ·
√
Sv1 ·Sv2 −K ·

√
Sv1 ·Sv2

−Sv1 Sv1 −K ·
√
Sv1 ·Sv2 K ·

√
Sv1 ·Sv2

K ·
√
Sv1 ·Sv2 −K ·

√
Sv1 ·Sv2 Sv2 −Sv2

−K ·
√
Sv1 ·Sv2 K ·

√
Sv1 ·Sv2 −Sv2 Sv2







(9.163)

(S) =







0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0







(9.164)

If a noise current source (ports 1 and 2) and a noise voltage source (ports 3 and 4) are correlated,
the MNA matrix entries are as follows.









. . . . 0

. . . . 0

. . . . −1

. . . . 1
0 0 1 −1 0









·









V1

V2

V3

V4

Ix









=









I1
I2
I3
I4
0









=









0
0
0
0
0









(9.165)

The appropriate noise current correlation matrix (with the noise power spectral densities Si1 and
Sv2 and the correlation coefficient K) yields:

(CY ) =









Si1 −Si1 0 0 K ·
√
Si1 ·Sv2

−Si1 Si1 0 0 0
0 0 0 0 0
0 0 0 0 0

K ·
√
Si1 ·Sv2 0 0 0 Sv2









(9.166)

Note: Because the gyrator factor (It is unity.) has been omitted in the above matrix the units
are not correct. This can be ignored.

The noise wave correlation matrix of one correlated noise current source Si1 and one noise voltage
source Sv2 with correlation coefficient K writes as follows.

(C) =







Z0 ·Si1 −Z0 ·Si1 K/2 ·
√
Si1 ·Sv2 −K/2 ·

√
Si1 ·Sv2

−Z0 ·Si1 Z0 ·Si1 −K/2 ·
√
Si1 ·Sv2 K/2 ·

√
Si1 ·Sv2

K/2 ·
√
Si1 ·Sv2 −K/2 ·

√
Si1 ·Sv2 Sv2/4/Z0 −Sv2/4/Z0

−K/2 ·
√
Si1 ·Sv2 K/2 ·

√
Si1 ·Sv2 −Sv2/4/Z0 Sv2/4/Z0







(9.167)

(S) =







1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0







(9.168)

9.20 Controlled sources

The models of the controlled sources contain the transfer factor G. It is complex because of the
delay time T and frequency f .

G = G · ejωT = G · ej · 2πf ·T (9.169)

During a DC analysis (frequency zero) it becomes real because the exponent factor is unity.
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9.20.1 Voltage controlled current source

The voltage-dependent current source (VCCS), as shown in fig. 9.8, is determined by the follow-
ing equation which introduces one more unknown in the MNA matrix.

I out
1

4

2

3

Figure 9.8: voltage controlled current source

Iout = G · (V1 − V4) → V1 − V4 −
1

G
· Iout = 0 (9.170)

The new unknown variable Iout must be considered by the four remaining simple equations.

I1 = 0 I2 = Iout I3 = −Iout I4 = 0 (9.171)

And in matrix representation this is:








. . . . 0

. . . . 1

. . . . −1

. . . . 0
1 0 0 −1 − 1

G









·









V1

V2

V3

V4

Iout









=









I1
I2
I3
I4
0









=









0
0
0
0
0









(9.172)

As you can see the last row which has been added by the VCCS represents the determining
equation (9.170). The additional right hand column in the matrix keeps the system consistent.

When pivotising the above MNA stamp (9.172) the additional row and column can be saved
ensuringG keeps finite (the pivot element must be non-zero). Both representations are equivalent.
If G is zero the below representation must be used.







0 0 0 0
G 0 0 −G
−G 0 0 G
0 0 0 0






·







V1

V2

V3

V4






=







I1
I2
I3
I4






=







0
0
0
0







(9.173)

The scattering matrix of the voltage controlled current source writes as follows (τ is time delay).

S11 = S22 = S33 = S44 = 1 (9.174)

S12 = S13 = S14 = S23 = S32 = S41 = S42 = S43 = 0 (9.175)

S21 = S34 = −2 ·G · exp (−jωτ) (9.176)

S24 = S31 = 2 ·G · exp (−jωτ) (9.177)

9.20.2 Current controlled current source

The current-dependent current source (CCCS), as shown in fig. 9.9, is determined by the follow-
ing equation which introduces one more unknown in the MNA matrix.
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1
out

4 3

2
I

Figure 9.9: current controlled current source

V1 − V4 = 0 (9.178)

The new unknown variable Iout must be considered by the four remaining simple equations.

I1 = +
1

G
· Iout I2 = Iout I3 = −Iout I4 = − 1

G
· Iout (9.179)

And in matrix representation this is:









. . . . 1
G

. . . . 1

. . . . −1

. . . . − 1
G

1 0 0 −1 0









·









V1

V2

V3

V4

Iout









=









I1
I2
I3
I4
0









=









0
0
0
0
0









(9.180)

The scattering matrix of the current controlled current source writes as follows (τ is time delay).

S14 = S22 = S33 = S41 = 1 (9.181)

S11 = S12 = S13 = S23 = S32 = S42 = S43 = S44 = 0 (9.182)

S21 = S34 = −G · exp (−jωτ) (9.183)

S24 = S31 = G · exp (−jωτ) (9.184)

9.20.3 Voltage controlled voltage source

The voltage-dependent voltage source (VCVS), as shown in fig. 9.10, is determined by the
following equation which introduces one more unknown in the MNA matrix.

I out

3

2

4

+

−

1

Figure 9.10: voltage controlled voltage source

V2 − V3 = G · (V1 − V4) → V1 ·G− V2 + V3 − V4 ·G = 0 (9.185)
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The new unknown variable Iout must be considered by the four remaining simple equations.

I1 = 0 I2 = −Iout I3 = Iout I4 = 0 (9.186)

And in matrix representation this is:








. . . . 0

. . . . −1

. . . . 1

. . . . 0
G −1 1 −G 0









·









V1

V2

V3

V4

Iout









=









I1
I2
I3
I4
0









=









0
0
0
0
0









(9.187)

The scattering matrix of the voltage controlled voltage source writes as follows (τ is time delay).

S11 = S23 = S32 = S44 = 1 (9.188)

S12 = S13 = S14 = S22 = S33 = S41 = S42 = S43 = 0 (9.189)

S21 = S34 = G · exp (−jωτ) (9.190)

S24 = S31 = −G · exp (−jωτ) (9.191)

9.20.4 Current controlled voltage source

The current-dependent voltage source (CCVS), as shown in fig. 9.11, is determined by the
following equations which introduce two more unknowns in the MNA matrix.

−

out

I in

3

21

4

+

I

Figure 9.11: current controlled voltage source

V1 − V4 = 0 (9.192)

V2 − V3 = G · Iin → V2 − V3 − Iin ·G = 0 (9.193)

The new unknown variables Iout and Iin must be considered by the four remaining simple equa-
tions.

I1 = Iin I2 = −Iout I3 = Iout I4 = −Iin (9.194)

The matrix representation needs to be augmented by two more new rows (for the new unknown
variables) and their corresponding columns.











. . . . 1 0

. . . . 0 −1

. . . . 0 1

. . . . −1 0
0 1 −1 0 −G 0
1 0 0 −1 0 0











·











V1

V2

V3

V4

Iin
Iout











=











I1
I2
I3
I4
0
0











=











0
0
0
0
0
0











(9.195)
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The scattering matrix of the current controlled voltage source writes as follows (τ is time delay).

S14 = S23 = S32 = S41 = 1 (9.196)

S11 = S12 = S13 = S22 = S33 = S42 = S43 = S44 = 0 (9.197)

S21 = S34 =
G

2
· exp (−jωτ) (9.198)

S24 = S31 = −G

2
· exp (−jωτ) (9.199)

9.21 Transmission Line

A transmission line is usually described by its ABCD-matrix. (Note that in ABCD-matrices, i.e.
the chain matrix representation, the current i2 is defined to flow out of the output port.)

(A) =

(
cosh (γ · l) ZL · sinh (γ · l)

sinh (γ · l)/ZL cosh (γ · l)

)

(9.200)

These can easily be recalculated into impedance parameters.

Z11 = Z22 =
ZL

tanh (γ · l) (9.201)

Z12 = Z21 =
ZL

sinh (γ · l) (9.202)

Or in admittance parameter representation it yields

Y11 = Y22 =
1

ZL · tanh (γ · l)

Y12 = Y21 =
−1

ZL · sinh (γ · l)

(9.203)

whence γ denotes the propagation constant α+jβ and l is the length of the transmission line. ZL

represents the characteristic impedance of the transmission line. The Y-parameters as defined
by eq. (9.203) can be used for the microstrip line. For an ideal, i.e. lossless, transmission lines
they write accordingly.

Z11 = Z22 =
ZL

j · tan (β · l) (9.204)

Z12 = Z21 =
ZL

j · sin (β · l) (9.205)

Y11 = Y22 =
1

j ·ZL · tan (β · l)
(9.206)

Y12 = Y21 =
j

ZL · sin (β · l)
(9.207)

The scattering matrix of an ideal, lossless transmission line with impedance Z and electrical
length l writes as follows.

r =
Z − Z0

Z + Z0
(9.208)
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p = exp

(

−jω l

c0

)

(9.209)

S11 = S22 =
r · (1 − p2)

1− r2 · p2 , S12 = S21 =
p · (1− r2)

1− r2 · p2 (9.210)

With c0 = 299 792 458 m/s being the vacuum light velocity. Adding attenuation to the trans-
mission line, the quantity p extends to:

p = exp

(

−jω l

c0
− α · l

)

(9.211)

Another equivalent equation set for the calculation of the scattering parameters is the following:
With the physical length l of the component, its impedance ZL and propagation constant γ, the
complex propagation constant γ is given by

γ = α+ jβ (9.212)

where α is the attenuation factor and β is the (real) propagation constant given by

β =
√

εreff
(ω) · k0 (9.213)

where εreff
(ω) is the effective dielectric constant and k0 is the TEM propagation constant k0 for

the equivalent transmission line with an air dielectric.

k0 = ω
√
ε0µ0 (9.214)

The expressions used to calculate the scattering parameters are given by

S11 = S22 =
(z − y) sinh γl

2 cosh γl+ (z + y) sinh γl
(9.215)

S12 = S21 =
2

2 cosh γl+ (z + y) sinh γl
(9.216)

with z being the normalized impedance and y is the normalized admittance.

9.22 Differential Transmission Line

A differential (4-port) transmission line is not referenced to ground potential, i.e. the wave from
the input (port 1 and 4) is distributed to the output (port 2 and 3). Its admittance parameters
are:

Y11 = Y22 = Y33 = Y44 = −Y14 = −Y41 = −Y23 = −Y32 =
1

ZL · tanh(γ · l)
(9.217)

Y13 = Y31 = Y24 = Y42 = −Y12 = −Y21 = −Y34 = −Y43 =
1

ZL · sinh(γ · l)
(9.218)

The scattering parameters writes:

S11 = S22 = S33 = S44 = ZL ·
(2 ·Z0 + ZL) · exp(2 · γ · l) + (2 ·Z0 − ZL)

(2 ·Z0 + ZL)2 · exp(2 · γ · l)− (2 ·Z0 − ZL)2
(9.219)
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S14 = S41 = S23 = S32 = 1− S11 (9.220)

S12 = S21 = S34 = S43 = −S13 = −S31 = −S24 = −S42 (9.221)

=
4 ·ZL ·Z0 · exp(γ · l)

(2 ·Z0 + ZL)2 · exp(2 · γ · l)− (2 ·Z0 − ZL)2
(9.222)

Note: As already stated, this is a pure differential transmission line without ground reference. It
is not a three-wire system. I.e. there is only one mode. The next section describes a differential
line with ground reference.

9.23 Coupled transmission line

A coupled transmission line is described by two identical transmission line ABCD-matrices, one
for the even mode (or common mode) and one for the odd mode (or differential mode). Because
the coupled lines are a symmetrical 3-line system, the matrices are completely independent of
each other. Therefore, its Y-parameters write as follows.

Y11 = Y22 = Y33 = Y44 =
1

2 ·ZL,e · tanh (γe · l)
+

1

2 ·ZL,o · tanh (γo · l)
(9.223)

Y12 = Y21 = Y34 = Y43 =
−1

2 ·ZL,e · sinh (γe · l)
+

−1
2 ·ZL,o · sinh (γo · l)

(9.224)

Y13 = Y31 = Y24 = Y42 =
−1

2 ·ZL,e · sinh (γe · l)
+

1

2 ·ZL,o · sinh (γo · l)
(9.225)

Y14 = Y41 = Y23 = Y32 =
1

2 ·ZL,e · tanh (γe · l)
+

−1
2 ·ZL,o · tanh (γo · l)

(9.226)

The S-parameters (according to the port numbering in fig. 9.12) are as followed [11].

reflection coefficients
S11 = S22 = S33 = S44 = Xe +Xo (9.227)

through paths
S12 = S21 = S34 = S43 = Ye + Yo (9.228)

coupled paths
S14 = S41 = S23 = S32 = Xe −Xo (9.229)

isolated paths
S13 = S31 = S24 = S42 = Ye − Yo (9.230)

with the denominator

De,o = 2 ·ZL,e,o ·Z0 · cosh(γe,o · l) +
(
Z2
L,e,o + Z2

0

)
· sinh (γe,o · l) (9.231)

and

Xe,o =

(
Z2
L,e,o − Z2

0

)
· sinh (γe,o · l)

2 ·De,o
(9.232)

Ye,o =
ZL,e,o ·Z0

De,o
(9.233)
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3

1 2

4

Figure 9.12: coupled transmission line

9.24 S-parameter container with additional reference port

The Y-parameters of a multi-port component defined by its S-parameters required for a small
signal AC analysis can be obtained by converting the S-parameters into Y-parameters.

S,C

m

S’,C’

Figure 9.13: S-parameter container with noise wave correlation matrix

In order to extend a m − 1-port to have a S-parameter device with m ports assuming that the
original reference port had a reflection coefficient Γm the new S-parameters are according to T.
O. Grosch and L. A. Carpenter [12]:

Smm =

2− Γm −m+

m−1∑

i=1

m−1∑

j=1

S′
ij

1−m ·Γm −
m−1∑

i=1

m−1∑

j=1

S′
ij

(9.234)

Sim =

(
1− Γm ·Smm

1− Γm

)

·



1−
m−1∑

j=1

S′
ij



 for i = 1, 2 . . .m− 1 (9.235)

Smj =

(
1− Γm ·Smm

1− Γm

)

·
(

1−
m−1∑

i=1

S′
ij

)

for j = 1, 2 . . .m− 1 (9.236)

Sij = S′
ij −

(
Γm ·Sim ·Smj

1− Γm ·Smm

)

for i, j = 1, 2 . . .m− 1 (9.237)

If the reference port has been ground potential, then Γm simply folds to -1. The reverse trans-
formation by connecting a termination with a reflection coefficient of Γm to the mth port writes
as follows.

S′
ij = Sij +

(
Γm ·Sim ·Smj

1− Γm ·Smm

)

for i, j = 1, 2 . . .m− 1 (9.238)
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With the S-parameter transformation done the m-port noise wave correlation matrix is

Cm =

∣
∣
∣
∣

1

1− Γm

∣
∣
∣
∣

2

·
(

K ·Cm−1 ·K+ − Ts · kB ·
∣
∣
∣1− |Γm|2

∣
∣
∣ ·D ·D+

)

(9.239)

with

K =










1 + Γm (S1m − 1) ΓmS1m . . . ΓmS1m

ΓmS2m 1 + Γm (S2m − 1) . . . ΓmS2m

...
...

. . .
...

ΓmS(m−1)m ΓmS(m−1)m . . . 1 + Γm

(
S(m−1)m − 1

)

ΓmSmm − 1 ΓmSmm − 1 . . . ΓmSmm − 1










(9.240)

D =










S1m

S2m

...
S(m−1)m

Smm − 1










(9.241)

whence Ts denotes the equivalent noise temperature of the original reference port and the +

operator indicates the transposed conjugate matrix (also called adjoint or adjugate).

The reverse transformation can be written as

Cm−1 = K ′ ·Cm ·K ′+ + Ts · kB ·

∣
∣
∣1− |Γm|2

∣
∣
∣

|1− ΓmSmm|2
·D′ ·D′+ (9.242)

with

K ′ =













1 0 . . . 0
ΓmS1m

1− ΓmSmm

0 1 . . . 0
ΓmS2m

1− ΓmSmm

. .
. . . .

...

0 0 . . . 1
ΓmS(m−1)m

1− ΓmSmm













(9.243)

D′ =








S1m

S2m

...
S(m−1)m








(9.244)

9.25 Real-Life Models

Non-ideal electronic components exhibit parasitic effects. Depending on the usage, they may
show a very different behaviour than the ideal ones. More precise models can sometimes be
obtained from their manufacturers or vendors. However, first oder approximations exists that
can give satisfactory result in many cases. A few of these simple models are presented in this
chapter.
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C=50 fF

R L=0.7 nH

Figure 9.14: simple equivalent circuit of a 0603 resistor

A model for a resistor (case 0603) is depicted in figure 9.14. Conclusion:

• useful up to 1GHz

• values around 150Ω are useful up to 10GHz

C 50 mΩ

(with via 1 nH)
0.3 nH

Figure 9.15: simple equivalent circuit of a 0603 ceramic capacitor

A model for a (ceramic) capacitor (case 0603) is depicted in figure 9.15. Conclusion:

• as coupling capacitor useful wide into GHz band

• as blocking capacitor a via is necessary, i.e. 10nF has resonance at about 50MHz

L=2.5 nH

ESR ESR ESR ESR ESR

C
32

C
16

C
8

C
4

C
2

Figure 9.16: simple equivalent circuit of an electrolyte capacitor

Electrolyte capacitors are quite complicate to model. They also show the biggest differences from
sample to sample. Nonetheless, figure 9.16 gives an idea how a model may look like. Conclusion:

• very broad resonance

• useful up to about 10MHz (strongly depending on capacitance)
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Chapter 10

Non-linear devices

10.1 Operational amplifier

The ideal operational amplifier, as shown in fig. 10.1, is determined by the following equation
which introduces one more unknown in the MNA matrix.

1
out

+

−3
2

I

Figure 10.1: ideal operational amplifier

V1 − V3 = 0 (10.1)

The new unknown variable Iout must be considered by the three remaining simple equations.

I1 = 0 I2 = Iout I3 = 0 (10.2)

And in matrix representation this is (for DC and AC simulation):






. . . 0

. . . 1

. . . 0
1 0 −1 0






·







V1

V2

V3

Iout






=







I1
I2
I3
0







(10.3)

The operational amplifier could be considered as a special case of a voltage controlled current
source with infinite forward transconductance G. Please note that the presented matrix form
is only valid in cases where there is a finite feedback impedance between the output and the
inverting input port.

To allow a feedback circuit to the non-inverting input (e.g. for a Schmitt trigger), one needs a
limited output voltage swing. The following equations are often used to model the transmission
characteristic of operational amplifiers.

I1 = 0 I3 = 0 (10.4)
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V2 = Vmax ·
2

π
arctan

(
π

2 ·Vmax
·G · (V1 − V3)

)

(10.5)

with Vmax being the maximum output voltage swing and G the voltage amplification. To model
the small-signal behaviour (AC analysis), it is necessary to differentiate:

g =
∂V2

∂(V1 − V3)
=

G

1 +

(
π

2 ·Vmax
·G · (V1 − V3)

)2 (10.6)

This leads to the following matrix representation being a specialised three node voltage controlled
voltage source (see section 9.20.3 on page 109).







. . . 0

. . . 1

. . . 0
g −1 −g 0






·







V1

V2

V3

Iout






=







I1
I2
I3
0







(10.7)

The above MNA matrix entries are also used during the non-linear DC analysis with the 0 in
the right hand side vector replaced by an equivalent voltage

Veq = g · (V1 − V3)− Vout (10.8)

with Vout computed using eq. (10.5).

With the given small-signal matrix representation, building the S-parameters is easy.

(S) =





1 0 0
4g −1 −4g
0 0 1



 (10.9)

10.2 PN-Junction Diode

The following table contains the model parameters for the pn-junction diode model.

Name Symbol Description Unit Default
Is IS saturation current A 10−14

N N emission coefficient 1.0
Isr ISR recombination current parameter A 0.0
Nr NR emission coefficient for Isr 2.0
Rs RS ohmic resistance Ω 0.0
Cj0 Cj0 zero-bias junction capacitance F 0.0
M M grading coefficient 0.5
Vj Vj junction potential V 0.7
Fc Fc forward-bias depletion capacitance coefficient 0.5
Cp Cp linear capacitance F 0.0
Tt τ transit time s 0.0
Bv Bv reverse breakdown voltage V ∞
Ibv IBv current at reverse breakdown voltage A 0.001
Kf KF flicker noise coefficient 0.0
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Name Symbol Description Unit Default
Af AF flicker noise exponent 1.0
Ffe FFE flicker noise frequency exponent 1.0

Temp T device temperature ◦C 26.85
Xti XTI saturation current exponent 3.0
Eg EG energy bandgap eV 1.11

Tbv TBv Bv linear temperature coefficient 1/◦C 0.0
Trs TRS Rs linear temperature coefficient 1/◦C 0.0

Ttt1 Tτ1 Tt linear temperature coefficient 1/◦C 0.0
Ttt2 Tτ2 Tt quadratic temperature coefficient 1/◦C2 0.0
Tm1 TM1 M linear temperature coefficient 1/◦C 0.0
Tm2 TM2 M quadratic temperature coefficient 1/◦C2 0.0

Tnom TNOM temperature at which parameters were extracted ◦C 26.85
Area A default area for diode 1.0

10.2.1 Large signal model

A

Cathode

Anode

C

RS

Figure 10.2: pn-junction diode symbol and large signal model

The current equation of the diode and its derivative writes as follows:

Id = IS ·
(

e
Vd

N ·VT − 1

)

+ ISR ·
(

e
Vd

NR ·VT − 1

)

(10.10)

gd =
∂Id
∂Vd

=
IS

N ·VT
· e

Vd
N ·VT +

ISR

NR ·VT
· e

Vd
NR ·VT (10.11)

119



C

d

A

gdI

Figure 10.3: accompanied DC model of intrinsic diode

The complete MNA matrix entries are:
[
gd −gd
−gd gd

]

·
[
VC

VA

]

=

[
+Id − gd ·Vd

−Id + gd ·Vd

]

(10.12)

10.2.2 Small signal model

d

A

C

C gd

Figure 10.4: small signal model of intrinsic diode

The voltage dependent capacitance consists of a diffusion capacitance, a junction capacitance
and an additional linear capacitance which is usually modeled by the following equations.

Cd = Cp + τ · gd +







Cj0 ·
(

1− Vd

Vj

)−M

for Vd ≤ Fc ·Vj

Cj0

(1− Fc)
M
·
(

1 +
M · (Vd − Fc ·Vj)

Vj · (1− Fc)

)

for Vd > Fc ·Vj

(10.13)

The S-parameters of the passive circuit shown in fig. 10.4 can be written as

S11 = S22 =
1

1 + 2 · y (10.14)

S12 = S21 = 1− S11 =
2 · y

1 + 2 · y (10.15)
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with
y = Z0 · (gd + jωCd) (10.16)

10.2.3 Noise model

The thermal noise generated by the series resistor is characterized by the following spectral
density.

i2RS

∆f
=

4kBT

RS
(10.17)

C

i 2
dd

A

Cd
g

Figure 10.5: noise model of intrinsic diode

The shot noise and flicker noise generated by the DC current flow through the diode is charac-
terized by the following spectral density.

i2d
∆f

= 2eId +KF
IAF

d

fFFE
(10.18)

Thus the noise current correlation matrix can be formed. This matrix can be easily converted
to the noise wave correlation matrix representation using the formulas given in section 2.4.2 on
page 26.

CY = ∆f

[

+i2d −i2d
−i2d +i2d

]

(10.19)

An ideal diode (pn- or schottky-diode) generates shot noise. Both types of current (field and
diffusion) contribute independently to it. That is, even though the two currents flow in different
directions (”minus” in dc current equation), they have to be added in the noise equation (current
is proportional to noise power spectral density). Taking into account the dynamic conductance
gd in parallel to the noise current source, the noise wave correlation matrix writes as follows.

(C) =

∣
∣
∣
∣

0.5 ·Y0

gd + jωCd + 0.5 ·Y0

∣
∣
∣
∣

2

· 2 · e · IS ·
(

exp

(
Vd

N ·VT

)

+ 1

)

·Z0 ·
(

1 −1
−1 1

)

= 2 · e ·Z0 · (Id + 2 · IS) ·
∣
∣
∣
∣

1

2 ·Z0 · (gd + jωCd) + 1

∣
∣
∣
∣

2

·
(

1 −1
−1 1

) (10.20)

Where e is charge of an electron, VT the temperature voltage, gd the (dynamic) conductance of
the diode and Cd its junction capacitance.

121



To be very precise, the equation above only holds for diodes whose field and diffusion current
dominate absolutely (diffusion limited diode), i.e. N = 1. Many diodes also generate a genera-
tion/recombination current (N ≈ 2), which produces shot noise, too. But depending on where
and how the charge carriers generate or recombine, their effective charge is somewhat smaller
than e. To take this into account, one needs a further factor K. Several opinions exist according
the value of K. Some say 1 and 2/3 are common values, others say K = 1/N with K and N
being bias dependent. Altogether it is:

(C) = 2 · e ·Z0 ·K · (Id + 2 · IS) ·
∣
∣
∣
∣

1

2 ·Z0 · (gd + jωCd) + 1

∣
∣
∣
∣

2

·
(

1 −1
−1 1

)

with
1

2
≤ K ≤ 1

(10.21)

Remark: Believing the diode equation ID = IS · (exp(V/(N ·VT )) − 1) is the whole truth, it
is logical to define K = 1/N , because at V = 0 the conductance gd of the diode must create
thermal noise.

Some special diodes have additional current or noise components (tunnel diodes, avalanche diodes
etc.). All these mechanisms are not taken into account in equation (10.21).

The parasitic ohmic resistance in a non-ideal diode, of course, creates thermal noise.
Noise current correlation matrix (for details on the parameters see above):

(CY ) = 2 · e ·K · (Id + 2 · IS) ·
(

1 −1
−1 1

)

(10.22)

10.2.4 Temperature model

This section mathematically describes the dependencies of the diode characterictics on temper-
ature. For a junction diode a typical value for XTI is 3.0, for a Schottky barrier diode it is 2.0.
The energy band gap at zero temperature EG is by default 1.11eV. For other materials than Si,
0.69eV (for a Schottky barrier diode), 0.67eV (for Ge) and 1.43eV (for GaAs) should be used.

n2
i (T ) = B ·T 3 · e−EG(T )/kBT (10.23)

ni (T ) = 1.45 ·1010 ·
(

T

300K

)1.5

· exp
(
e ·EG (300K)

2 · kB · 300K
− e ·EG (T )

2 · kB ·T

)

(10.24)

EG (T ) = EG −
α ·T 2

β + T
(10.25)

with experimental values for Si given by

α = 7.02 ·10−4

β = 1108

EG = 1.16eV

The following equations show the temperature dependencies of the diode parameters. The ref-
erence temperature T1 in these equations denotes the nominal temperature TNOM specified by
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the diode model.

IS (T2) = IS (T1) ·
(
T2

T1

)XTI/N

· exp
[

−e ·EG (300K)

N · kB ·T2
·
(

1− T2

T1

)]

(10.26)

Vj (T2) =
T2

T1
·Vj (T1) +

2 · kB ·T2

e
· ln

(
ni (T1)

ni (T2)

)

(10.27)

=
T2

T1
·Vj (T1)−

2 · kB ·T2

e
· ln

(
T2

T1

)1.5

−
(
T2

T1
·EG (T1)− EG (T2)

)

(10.28)

Cj0 (T2) = Cj0 (T1) ·
(

1 +M ·
(

400 · 10−6 · (T2 − T1)−
Vj (T2)− Vj (T1)

Vj (T1)

))

(10.29)

Some additionial temperature coefficients determine the temperature dependence of even more
model parameters.

Bv (T2) = Bv (T1)− TBv · (T2 − T1) (10.30)

τ (T2) = τ (T1) ·
(

1 + Tτ1 · (T2 − T1) + Tτ2 · (T2 − T1)
2
)

(10.31)

M (T2) = M (T1) ·
(

1 + TM1 · (T2 − T1) + TM2 · (T2 − T1)
2
)

(10.32)

RS (T2) = RS (T1) · (1 + TRS · (T2 − T1)) (10.33)

10.2.5 Area dependence of the model

The area factor A used in the diode model determines the number of equivalent parallel devices
of the specified model. The diode model parameters affected by the A factor are:

IS (A) = IS ·A (10.34)

Cj0 (A) = Cj0 ·A (10.35)

RS (A) =
RS

A
(10.36)

10.3 Junction FET

The following table contains the model parameters for the JFET model.

Name Symbol Description Unit Default
Vt0 VTh zero -bias threshold voltage V −2.0
Beta β transconductance parameter A/V2 10−4

Lambda λ channel-length modulation parameter 1/V 0.0
Rd RD drain ohmic resistance Ω 0.0
Rs RS source ohmic resistance Ω 0.0
Is IS gate-junction saturation current A 10−14

N N gate P-N emission coefficient 1.0
Isr ISR gate-junction recombination current parameter A 0.0
Nr NR Isr emission coefficient 2.0
Cgs Cgs zero-bias gate-source junction capacitance F 0.0
Cgd Cgd zero-bias gate-drain junction capacitance F 0.0
Pb Pb gate-junction potential V 1.0
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Name Symbol Description Unit Default
Fc Fc forward-bias junction capacitance coefficient 0.5
M M gate P-N grading coefficient 0.5
Kf KF flicker noise coefficient 0.0
Af AF flicker noise exponent 1.0
Ffe FFE flicker noise frequency exponent 1.0

Temp T device temperature ◦C 26.85
Xti XTI saturation current exponent 3.0

Vt0tc VThTC
Vt0 temperature coefficient V/◦C 0.0

Betatce βTCE Beta exponential temperature coefficient %/◦C 0.0
Tnom TNOM temperature at which parameters were extracted ◦C 26.85
Area A default area for JFET 1.0

10.3.1 Large signal model

Source

RD

S

RS

Drain

Gate G

D

Figure 10.6: junction FET symbol and large signal model

The current equation of the gate source diode and its derivative writes as follows:

IGS = IS ·
(

e
VGS

N ·VT − 1

)

+ ISR ·
(

e
VGS

NR · VT − 1

)

(10.37)

ggs =
∂IGS

∂VGS
=

IS
N ·VT

· e
VGS

N · VT +
ISR

NR ·VT
· e

VGS
NR ·VT (10.38)
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The current equation of the gate drain diode and its derivative writes as follows:

IGD = IS ·
(

e
VGD

N ·VT − 1

)

+ ISR ·
(

e
VGD

NR · VT − 1

)

(10.39)

ggd =
∂IGD

∂VGD
=

IS
N ·VT

· e
VGD

N · VT +
ISR

NR ·VT
· e

VGD
NR ·VT (10.40)

Both equations contain the gate-junction saturation current IS , the gate P-N emission coefficient
N and the temperature voltage VT with the Boltzmann’s constant kB and the electron charge q.
The operating temperature T must be specified in Kelvin.

VT =
kB ·T

q
(10.41)

The controlled drain currents have been defined by Shichman and Hodges [13] for different modes
of operations.

gm =
∂Id
∂VGS

and gds =
∂Id
∂VDS

with VGD = VGS − VDS (10.42)

• normal mode: VDS > 0

– normal mode, cutoff region: VGS − VTh < 0

Id = 0 (10.43)

gm = 0 (10.44)

gds = 0 (10.45)

– normal mode, saturation region: 0 < VGS − VTh < VDS

Id = β · (1 + λVDS) · (VGS − VTh)
2 (10.46)

gm = β · (1 + λVDS) · 2 (VGS − VTh) (10.47)

gds = β ·λ (VGS − VTh)
2

(10.48)

– normal mode, linear region: VDS < VGS − VTh

Id = β · (1 + λVDS) · (2 (VGS − VTh)− VDS) ·VDS (10.49)

gm = β · (1 + λVDS) · 2 ·VDS (10.50)

gds = β · (1 + λVDS) · 2 (VGS − VTh − VDS) + β ·λVDS · (2 (VGS − VTh)− VDS)
(10.51)

• inverse mode: VDS < 0

– inverse mode, cutoff region: VGD − VTh < 0

Id = 0 (10.52)

gm = 0 (10.53)

gds = 0 (10.54)
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– inverse mode, saturation region: 0 < VGD − VTh < −VDS

Id = −β · (1− λVDS) · (VGD − VTh)
2 (10.55)

gm = −β · (1− λVDS) · 2 (VGD − VTh) (10.56)

gds = β ·λ (VGD − VTh)
2
+ β · (1− λVDS) · 2 (VGD − VTh) (10.57)

– inverse mode, linear region: −VDS < VGD − VTh

Id = β · (1− λVDS) · (2 (VGD − VTh) + VDS) ·VDS (10.58)

gm = β · (1− λVDS) · 2 ·VDS (10.59)

gds = β · (1− λVDS) · 2 (VGD − VTh)− β ·λVDS · (2 (VGD − VTh) + VDS) (10.60)

The MNA matrix entries for the voltage controlled drain current source can be written as:

G S controlling nodes
D +gm −gm
S −gm +gm

controlled
nodes

With the accompanied DC model shown in fig. 10.7 using the same principles as explained in
section 3.3.1 on page 36 it is possible to build the complete MNA matrix of the intrinsic JFET.

G

I GD

ggs

gmVGS

S

D

gdg

dsg

I

I

GS

DS

Figure 10.7: accompanied DC model of intrinsic JFET

Applying the rules for creating the MNA matrix of an arbitrary network the complete MNA
matrix entries (admittance matrix and current vector) for the intrinsic junction FET are:





ggd + ggs −ggd −ggs
−ggd + gm gds + ggd −gds − gm
−ggs − gm −gds ggs + gds + gm



 ·





VG

VD

VS



 =





−IGDeq
− IGSeq

+IGDeq
− IDSeq

+IGSeq
+ IDSeq



 (10.61)
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with

IGSeq
= IGS − ggs ·VGS (10.62)

IGDeq
= IGD − ggd ·VGD (10.63)

IDSeq
= Id − gm ·VGS − gds ·VDS (10.64)

10.3.2 Small signal model

ds

gs

gm GS g

g

S

D

gdg

G

C

C

GS

GD

V

Figure 10.8: small signal model of intrinsic junction FET

The small signal Y-parameter matrix of the intrinsic junction FET writes as follows. It can be
converted to S-parameters.

Y =





YGD + YGS −YGD −YGS

gm − YGD YGD + YDS −YDS − gm
−gm − YGS −YDS YGS + YDS + gm



 (10.65)

with

YGD = ggd + jωCGD (10.66)

YGS = ggs + jωCGS (10.67)

YDS = gds (10.68)

The junction capacitances are modeled with the following equations.
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CGD =







Cgd ·
(

1− VGD

Pb

)−M

for VGD ≤ Fc ·Pb

Cgd

(1− Fc)
M
·
(

1 +
M · (VGD − Fc ·Pb)

Pb · (1− Fc)

)

for VGD > Fc ·Pb

(10.69)

CGS =







Cgs ·
(

1− VGS

Pb

)−M

for VGS ≤ Fc ·Pb

Cgs

(1− Fc)
M
·
(

1 +
M · (VGS − Fc ·Pb)

Pb · (1− Fc)

)

for VGS > Fc ·Pb

(10.70)

10.3.3 Noise model

Both the drain and source resistance RD and RS generate thermal noise characterized by the
following spectral density.

i2RD

∆f
=

4kBT

RD
and

i2RS

∆f
=

4kBT

RS
(10.71)
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Figure 10.9: noise model of intrinsic junction FET

Channel noise and flicker noise generated by the DC transconductance gm and current flow from
drain to source is characterized by the following spectral density.

i2ds
∆f

=
8kBTgm

3
+KF

IAF

DS

fFFE
(10.72)

The noise current correlation matrix (admittance representation) of the intrinsic junction FET
can be expressed by

CY = ∆f





0 0 0

0 +i2ds −i2ds
0 −i2ds +i2ds



 (10.73)
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This matrix representation can be easily converted to the noise-wave representation CS if the
small signal S-parameter matrix is known.

10.3.4 Temperature model

Temperature appears explicitly in the exponential terms of the JFET model equations. In
addition, saturation current, gate-junction potential and zero-bias junction capacitances have
built-in temperature dependence.

IS (T2) = IS (T1) ·
(
T2

T1

)XTI/N

· exp
[

−e ·EG (300K)

N · kB ·T2
·
(

1− T2

T1

)]

(10.74)

ISR (T2) = ISR (T1) ·
(
T2

T1

)XTI/NR

· exp
[

−e ·EG (300K)

NR · kB ·T2
·
(

1− T2

T1

)]

(10.75)

Pb (T2) =
T2

T1
·Pb (T1)−

2 · kB ·T2

e
· ln

(
T2

T1

)1.5

−
(
T2

T1
·EG (T1)− EG (T2)

)

(10.76)

Cgs (T2) = Cgs (T1) ·
(

1 +M ·
(

400 ·10−6 · (T2 − T1)−
Pb (T2)− Pb (T1)

Pb (T1)

))

(10.77)

Cgd (T2) = Cgd (T1) ·
(

1 +M ·
(

400 · 10−6 · (T2 − T1)−
Pb (T2)− Pb (T1)

Pb (T1)

))

(10.78)

where the EG (T ) dependency has already been described in section 10.2.4 on page 122. Also
the threshold voltage as well as the transconductance parameter have a temperature dependence
determined by

VTh (T2) = VTh (T1) + VThTC
· (T2 − T1) (10.79)

β (T2) = β (T1) · 1.01βTCE · (T2−T1) (10.80)

10.3.5 Area dependence of the model

The area factor A used for the JFET model determines the number of equivalent parallel devices
of a specified model. The following parameters are affected by the area factor.

β (A) = β ·A IS (A) = IS ·A (10.81)

RD (A) =
RD

A
RS (A) =

RS

A
(10.82)

Cgs (A) = Cgs ·A Cgd (A) = Cgd ·A (10.83)

10.4 Homo-Junction Bipolar Transistor

The following table contains the model parameters for the BJT (Spice Gummel-Poon) model.

Name Symbol Description Unit Default
Is IS saturation current A 10−16

Nf NF forward emission coefficient 1.0
Nr NR reverse emission coefficient 1.0
Ikf IKF high current corner for forward beta A ∞
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Name Symbol Description Unit Default
Ikr IKR high current corner for reverse beta A ∞
Vaf VAF forward early voltage V ∞
Var VAR reverse early voltage V ∞
Ise ISE base-emitter leakage saturation current A 0
Ne NE base-emitter leakage emission coefficient 1.5
Isc ISC base-collector leakage saturation current A 0
Nc NC base-collector leakage emission coefficient 2.0
Bf BF forward beta 100
Br BR reverse beta 1

Rbm RBm minimum base resistance for high currents Ω 0.0
Irb IRB current for base resistance midpoint A ∞
Rc RC collector ohmic resistance Ω 0.0
Re RE emitter ohmic resistance Ω 0.0
Rb RB zero-bias base resistance (may be high-current Ω 0.0

dependent)
Cje CJE base-emitter zero-bias depletion capacitance F 0.0
Vje VJE base-emitter junction built-in potential V 0.75
Mje MJE base-emitter junction exponential factor 0.33
Cjc CJC base-collector zero-bias depletion capacitance F 0.0
Vjc VJC base-collector junction built-in potential V 0.75
Mjc MJC base-collector junction exponential factor 0.33
Xcjc XCJC fraction of Cjc that goes to internal base pin 1.0
Cjs CJS zero-bias collector-substrate capacitance F 0.0
Vjs VJS substrate junction built-in potential V 0.75
Mjs MJS substrate junction exponential factor 0.0
Fc FC forward-bias depletion capacitance coefficient 0.5
Tf TF ideal forward transit time s 0.0
Xtf XTF coefficient of bias-dependence for Tf 0.0
Vtf VTF voltage dependence of Tf on base-collector voltage V ∞
Itf ITF high-current effect on Tf A 0.0
Ptf ϕTF excess phase at the frequency 1/(2πTF )

◦ 0.0
Tr TR ideal reverse transit time s 0.0
Kf KF flicker noise coefficient 0.0
Af AF flicker noise exponent 1.0
Ffe FFE flicker noise frequency exponent 1.0
Kb KB burst noise coefficient 0.0
Ab AB burst noise exponent 1.0
Fb FB burst noise corner frequency Hz 1.0

Temp T device temperature ◦C 26.85
Xti XTI saturation current exponent 3.0
Xtb XTB temperature exponent for forward- and reverse-beta 0.0
Eg EG energy bandgap eV 1.11

Tnom TNOM temperature at which parameters were extracted ◦C 26.85
Area A default area for bipolar transistor 1.0

10.4.1 Large signal model
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Figure 10.10: bipolar transistor symbol and large signal model for vertical device

The SGP (SPICE Gummel-Poon) model is basically a transport model, i.e. the voltage depen-
dent ideal transfer currents (forward IF and backward IR) are reference currents in the model.
The ideal base current parts are defined dependent on the ideal transfer currents. The ideal for-
ward transfer current starts flowing when applying a positive control voltage at the base-emitter
junction. It is defined by:

IF = IS ·
(

e
VBE

NF ·VT − 1

)

(10.84)

The ideal base current components are defined by the ideal transfer currents. The non-ideal
components are independently defined by dedicated saturation currents and emission coefficients.

IBEI =
IF
BF

gBEI =
∂IBEI

∂VBE
=

IS
NF ·VT ·BF

· e
VBE

NF · VT (10.85)

IBEN = ISE ·
(

e
VBE

NE ·VT − 1

)

gBEN =
∂IBEN

∂VBE
=

ISE

NE ·VT
· e

VBE
NE ·VT (10.86)

IBE = IBEI + IBEN (10.87)

gπ = gBE = gBEI + gBEN (10.88)

The ideal backward transfer current arises when applying a positive control voltage at the base-
collector junction (e.g. in the active inverse mode). It is defined by:

IR = IS ·
(

e
VBC

NR ·VT − 1

)

(10.89)
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Again, the ideal base current component through the base-collector junction is defined in refer-
ence to the ideal backward transfer current and the non-ideal component is defined by a dedicated
saturation current and emission coefficient.

IBCI =
IR
BR

gBCI =
∂IBCI

∂VBC
=

IS
NR ·VT ·BR

· e
VBC

NR · VT (10.90)

IBCN = ISC ·
(

e
VBC

NC · VT − 1

)

gBCN =
∂IBCN

∂VBC
=

ISC

NC ·VT
· e

VBC
NC ·VT (10.91)

IBC = IBCI + IBCN (10.92)

gµ = gBC = gBCI + gBCN (10.93)

With these definitions it is possible to calculate the overall base current flowing into the device
using all the base current components.

IB = IBE + IBC = IBEI + IBEN + IBCI + IBCN (10.94)

The overall transfer current IT can be calculated using the normalized base charge QB and the
ideal forward and backward transfer currents.

IT = ITF − ITR =
IF − IR
QB

(10.95)

The normalized base charge QB has no dimension and has the value 1 for VBE = VBC = 0. It
is used to model two effects: the influence of the base width modulation on the transfer current
(Early effect) and the ideal transfer currents deviation at high currents, i.e. the decreasing
current gain at high currents.

QB =
Q1

2
·
(

1 +
√

1 + 4 ·Q2

)

(10.96)

The Q1 term is used to describe the Early effect and Q2 is responsible for the high current effects.

Q1 =
1

1− VBC

VAF
− VBE

VAR

and Q2 =
IF
IKF

+
IR
IKR

(10.97)

The transfer current IT depends on VBE and VBC by the normalized base charge QB and the
forward transfer current IF and the backward transfer current IR. That is why both of the
partial derivatives are required.

The forward transconductance gmf of the transfer current IT is obtained by differentiating it
with respect to VBE . The reverse transconductance gmr can be calculated by differentiating the
transfer current with respect to VBC .

gmf =
∂IT
∂VBE

=
∂ITF

∂VBE
− ∂ITR

∂VBE
=

1

QB
·
(

+gIF − IT ·
∂QB

∂VBE

)

(10.98)

gmr =
∂IT
∂VBC

=
∂ITF

∂VBC
− ∂ITR

∂VBC
=

1

QB
·
(

−gIR − IT ·
∂QB

∂VBC

)

(10.99)
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With gIF being the forward conductance of the ideal forward transfer current and gIR being the
reverse conductance of the ideal backward transfer current.

gIF =
∂IF
∂VBE

= gBEI ·BF (10.100)

gIR =
∂IR
∂VBC

= gBCI ·BR (10.101)

The remaining derivatives in eq. (10.98), (10.99), (10.119) and (10.120) can be written as

∂QB

∂VBE
= Q1 ·

(
QB

VAR
+

gIF

IKF ·
√
1 + 4 ·Q2

)

(10.102)

∂QB

∂VBC
= Q1 ·

(
QB

VAF
+

gIR

IKR ·
√
1 + 4 ·Q2

)

(10.103)

For the calculation of the bias dependent base resistance RBB′ there are two different ways within
the SGP model. If the model parameter IRB is not given it is determined by the normalized
base charge QB. Otherwise IRB specifies the base current at which the base resistance drops
half way to the minimum (i.e. the constant component) base resistance RBm.

RBB′ =







RBm +
RB −RBm

QB
for IRB =∞

RBm + 3 · (RB −RBm) · tan z − z

z · tan2 z for IRB 6=∞
(10.104)

with z =

√

1 +
144

π2
· IB
IRB

− 1

24

π2
·
√

IB
IRB

(10.105)
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Figure 10.11: accompanied DC model of intrinsic BJT

With the accompanied DC model shown in fig. 10.11 the MNA matrix entries as well as the
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current vector entries differ.






gµ + gπ −gµ −gπ 0
−gµ + gmf − gmr gµ + gmr −gmf 0
−gπ − gmf + gmr −gmr gπ + gmf 0

0 0 0 0






·







VB

VC

VE

VS






=







−IBEeq
− IBCeq

+IBCeq
− ICEeq

+IBEeq
+ ICEeq

0







(10.106)

IBEeq
= IBE − gπ ·VBE (10.107)

IBCeq
= IBC − gµ ·VBC (10.108)

ICEeq
= IT − gmf ·VBE + gmr ·VBC (10.109)

In order to implement the influence of the excess phase parameter ϕTF – denoting the phase
shift of the current gain at the transit frequency – the method developed by P.B. Weil and L.P.
McNamee [14] can be used. They propose to use a second-order Bessel polynomial to modify
the forward transfer current:

ITx = IT ·Φ (s) = IT ·
3 ·ω2

0

s2 + 3 ·ω0 · s+ 3 ·ω2
0

(10.110)

This polynomial is formulated to closely resemble a time domain delay for a Gaussian curve
which is similar to the physical phenomenon exhibited by bipolar transistor action.

Applying the inverse Laplace transformation to eq. (10.110) and using finite difference methods
the transfer current can be written as

In+1
Tx = C1 · In+1

T + C2 · InTx − C3 · In−1
Tx (10.111)

with

C1 =
3 ·ω2

0 ·∆t2

1 + 3 ·ω0 ·∆t+ 3 ·ω2
0 ·∆t2

(10.112)

C2 =
2 + 3 ·ω0 ·∆t

1 + 3 ·ω0 ·∆t+ 3 ·ω2
0 ·∆t2

(10.113)

C3 =
1

1 + 3 ·ω0 ·∆t+ 3 ·ω2
0 ·∆t2

(10.114)

and

ω0 =
π

180
· 1

ϕTF ·TF
(10.115)

The appropiate modified derivative writes as

gn+1
mx = C1 · gn+1

m (10.116)

It should be noted that the excess phase implementation during the transient analysis (and thus
in the AC analysis as well) holds for the forward part of the transfer current only.

With non-equidistant inegration time steps during transient analysis present eqs. (10.113) and
(10.114) yield

C2 =
1 +∆t/∆t1 + 3 ·ω0 ·∆t

1 + 3 ·ω0 ·∆t+ 3 ·ω2
0 ·∆t2

(10.117)

C3 =
∆t/∆t1

1 + 3 ·ω0 ·∆t+ 3 ·ω2
0 ·∆t2

(10.118)

whereas ∆t denotes the current time step and ∆t1 the previous one.
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Original SPICE model

The original SGP model implementation defines the output conductance g0 and the transcon-
ductance value gm. Thus the SPICE simulator is able to compute the BJT circuit using a single
voltage controlled current source. These definitions are given here.

g0 =
∂IT
∂VCE

∣
∣
∣
∣
VBE=const

= − ∂IT
∂VBC

= −gmr =
1

QB
·
(

gIR + IT ·
∂QB

∂VBC

)

(10.119)

gm =
∂IT
∂VBE

∣
∣
∣
∣
VCE=const

=
∂IT
∂VBE

+
∂IT
∂VBC

= gmf + gmr =
1

QB
·
(

gIF − IT ·
∂QB

∂VBE

)

− g0

(10.120)

There are two possible ways to compute the MNA matrix of the SGP model. One using a
single voltage controlled current source with an accompanied output conductance and the other
using two independent voltage controlled current sources (see fig.10.11). Both possibilities are
equivalent.

0

IBC gBC IT

VBE

C

E

mg

B

IBE gBE

g

Figure 10.12: accompanied DC model of intrinsic BJT in SPICE

With the accompanied DC model shown in fig. 10.12 it is possible to build the complete MNA
matrix of the intrinsic BJT and the current vector.







gµ + gπ −gµ −gπ 0
−gµ + gm g0 + gµ −g0 − gm 0
−gπ − gm −g0 gπ + g0 + gm 0

0 0 0 0






·







VB

VC

VE

VS






=







−IBEeq
− IBCeq

+IBCeq
− ICEeq

+IBEeq
+ ICEeq

0







(10.121)

IBEeq
= IBE − gπ ·VBE (10.122)

IBCeq
= IBC − gµ ·VBC (10.123)

ICEeq
= IT − gm ·VBE − g0 ·VCE (10.124)
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10.4.2 Small signal model

Equations for the real valued conductances in both equivalent circuits for the intrinsic BJT have
already been given.

CS

gBC

gmf VBE
CBE

C
C

E

CBC

B

gBE

Vgmr BC

S

Figure 10.13: small signal model of intrinsic BJT

The junctions depletion capacitances in the SGP model write as follows:

CBEdep
=







CJE ·
(

1− VBE

VJE

)−MJE

for VBE ≤ FC ·VJE

CJE

(1− FC)
MJE

·
(

1 +
MJE · (VBE − FC ·VJE)

VJE · (1− FC)

)

for VBE > FC ·VJE

(10.125)

CBCdep
=







CJC ·
(

1− VBC

VJC

)−MJC

for VBC ≤ FC ·VJC

CJC

(1− FC)
MJC

·
(

1 +
MJC · (VBC − FC ·VJC)

VJC · (1− FC)

)

for VBC > FC ·VJC

(10.126)

CCSdep
=







CJS ·
(

1− VCS

VJS

)−MJS

for VCS ≤ 0

CJS ·
(

1 +MJS ·
VCS

VJS

)

for VCS > 0

(10.127)

The base-collector depletion capacitance is split into two components: an external and an inter-
nal.

CBCIdep = XCJC ·CBCdep
(10.128)

CBCXdep
= (1−XCJC) ·CBCdep

(10.129)

The base-emitter diffusion capacitance can be obtained using the following equation.

CBEdiff
=

∂QBE

∂VBE
with QBE =

IF
QB
·TFF (10.130)
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Thus the diffusion capacitance depends on the bias-dependent effective forward transit time TFF

which is defined as:

TFF = TF ·
(

1 +XTF ·
(

IF
IF + ITF

)2

· exp
(

VBC

1.44 ·VTF

))

(10.131)

With
∂TFF

∂VBE
=

TF ·XTF · 2 · gIF · IF · ITF

(IF + ITF )
3 · exp

(
VBC

1.44 ·VTF

)

(10.132)

the base-emitter diffusion capacitance can finally be written as:

CBEdiff
=

∂QBE

∂VBE
=

1

QB
·
(

IF ·
∂TFF

∂VBE
+ TFF ·

(

gIF −
IF
QB
· ∂QB

∂VBE

))

(10.133)

Because the base-emitter charge QBE in eq. (10.130) also depends on the voltage across the
base-collector junction, it is necessary to find the appropriate derivative as well:

CBEBC
=

∂QBE

∂VBC
=

IF
QB
·
(
∂TFF

∂VBC
− TFF

QB
· ∂QB

∂VBC

)

(10.134)

which turns out to be a so called transcapacitance. It additionally requires:

∂TFF

∂VBC
=

TF ·XTF

1.44 ·VTF
·
(

IF
IF + ITF

)2

· exp
(

VBC

1.44 ·VTF

)

(10.135)

The base-collector diffusion capacitance writes as follows:

CBCdiff
=

∂QBC

∂VBC
= TR · gIR (10.136)

To take the excess phase parameter ϕTF into account the forward transconductance is going to
be a complex quantity.

gmf = gmf · e−jϕex with ϕex =
( π

180
·ϕTF

)

·TF · 2πf (10.137)

With these calculations made it is now possible to define the small signal Y-parameters of the
intrinsic BJT. The Y-parameter matrix can be converted to S-parameters.

Y =







YBC + YBE + YBEBC
−YBC − YBEBC

−YBE 0
gmf − YBC − gmr YCS + YBC + gmr −gmf −YCS

gmr − gmf − YBE − YBEBC
−gmr + YBEBC

YBE + gmf 0
0 −YCS 0 YCS







(10.138)

with

YBC = gµ + jω
(
CBCIdep + CBCdiff

)
(10.139)

YBE = gπ + jω
(
CBEdep

+ CBEdiff

)
(10.140)

YCS = jω ·CCSdep
(10.141)

YBEBC
= jω ·CBEBC

(10.142)

The external capacitance CBCX connected between the internal collector node and the external
base node is separately modeled if it is non-zero and if there is a non-zero base resistance.

Original SPICE model

The original SPICE variant of the above small signal equivalent circuit with the transconductance
gm and the output conductance g0 is depicted in fig. 10.14.
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Figure 10.14: small signal model of intrinsic BJT in SPICE

The appropriate MNA matrix (Y-parameters) during the small signal analysis can be written as

Y =







YBC + YBE + YBEBC
−YBC − YBEBC

−YBE 0
gm − YBC YCS + YBC + g0 −gm − g0 −YCS

−gm − YBE − YBEBC
−g0 + YBEBC

YBE + gm + g0 0
0 −YCS 0 YCS







(10.143)

10.4.3 Noise model

The ohmic resistances RBB′ , RC and RE generate thermal noise characterized by the following
spectral densities.

i2RBB′

∆f
=

4kBT

RBB′

and
i2RC

∆f
=

4kBT

RC
and

i2RE

∆f
=

4kBT

RE
(10.144)
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Figure 10.15: noise model of intrinsic BJT

Shot noise, flicker noise and burst noise generated by the DC base current is characterized by
the spectral density

i2b
∆f

= 2eIBE +KF
IAF

BE

fFFE
+KB

IAB

BE

1 +

(
f

FB

)2 (10.145)

The shot noise generated by the DC collector to emitter current flow is characterized by the
spectral density

i2c
∆f

= 2eIT (10.146)

The noise current correlation matrix of the four port intrinsic bipolar transistor can then be
written as

CY = ∆f







+i2b 0 −i2b 0

0 +i2c −i2c 0

−i2b −i2c +i2c + i2b 0
0 0 0 0







(10.147)

This matrix representation can be converted to the noise wave correlation matrix representation
CS using the formulas given in section 2.4.2 on page 26.

10.4.4 Temperature model

Temperature appears explicitly in the exponential term of the bipolar transistor model equations.
In addition, the model parameters are modified to reflect changes in the temperature. The
reference temperature T1 in these equations denotes the nominal temperature TNOM specified
by the bipolar transistor model.
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IS (T2) = IS (T1) ·
(
T2

T1

)XTI

· exp
[

−e ·EG (300K)

kB ·T2
·
(

1− T2

T1

)]

(10.148)

VJE (T2) =
T2

T1
·VJE (T1)−

2 · kB ·T2

e
· ln

(
T2

T1

)1.5

−
(
T2

T1
·EG (T1)− EG (T2)

)

(10.149)

VJC (T2) =
T2

T1
·VJC (T1)−

2 · kB ·T2

e
· ln

(
T2

T1

)1.5

−
(
T2

T1
·EG (T1)− EG (T2)

)

(10.150)

VJS (T2) =
T2

T1
·VJS (T1)−

2 · kB ·T2

e
· ln

(
T2

T1

)1.5

−
(
T2

T1
·EG (T1)− EG (T2)

)

(10.151)

where the EG (T ) dependency has already been described in section 10.2.4 on page 122. The
temperature dependence of BF and BR is determined by

BF (T2) = BF (T1) ·
(
T2

T1

)XTB

(10.152)

BR (T2) = BR (T1) ·
(
T2

T1

)XTB

(10.153)

Through the parameters ISE and ISC , respectively, the temperature dependence of the non-ideal
saturation currents is determined by

ISE (T2) = ISE (T1) ·
(
T2

T1

)−XTB

·
[
IS (T2)

IS (T1)

]1/NE

(10.154)

ISC (T2) = ISC (T1) ·
(
T2

T1

)−XTB

·
[
IS (T2)

IS (T1)

]1/NC

(10.155)

The temperature dependence of the zero-bias depletion capacitances CJE , CJC and CJS are
determined by

CJE (T2) = CJE (T1) ·
(

1 +MJE ·
(

400 ·10−6 · (T2 − T1)−
VJE (T2)− VJE (T1)

VJE (T1)

))

(10.156)

CJC (T2) = CJC (T1) ·
(

1 +MJC ·
(

400 ·10−6 · (T2 − T1)−
VJC (T2)− VJC (T1)

VJC (T1)

))

(10.157)

CJS (T2) = CJS (T1) ·
(

1 +MJS ·
(

400 ·10−6 · (T2 − T1)−
VJS (T2)− VJS (T1)

VJS (T1)

))

(10.158)

10.4.5 Area dependence of the model

The area factor A used in the bipolar transistor model determines the number of equivalent
parallel devices of a specified model. The bipolar transistor model parameters affected by the A
factor are:

IS (A) = IS ·A (10.159)

ISE (A) = ISE ·A ISC (A) = ISC ·A (10.160)

IKF (A) = IKF ·A IKR (A) = IKR ·A (10.161)

IRB (A) = IRB ·A ITF (A) = ITF ·A (10.162)
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CJE (A) = CJE ·A CJC (A) = CJC ·A (10.163)

CJS (A) = CJS ·A (10.164)

RB (A) =
RB

A
RBm (A) =

RBm

A
(10.165)

RE (A) =
RE

A
RC (A) =

RC

A
(10.166)

10.5 MOS Field-Effect Transistor
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Figure 10.16: vertical section of integrated MOSFET
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Figure 10.17: four types of MOS field effect transistors and their symbols

There are four different types of MOS field effect transistors as shown in fig. 10.17 all covered
by the model going to be explained here. The “First Order Model” is a physical model with the
drain current equations according to Harold Shichman and David A. Hodges [13].

The following table contains the model and device parameters for the MOSFET level 1.

Name Symbol Description Unit Default Typical
Is IS bulk junction saturation current A 10−14 10−15

N N bulk junction emission coefficient 1.0
Vt0 VT0 zero-bias threshold voltage V 0.0 0.7

Lambda λ channel-length modulation parameter 1/V 0.0 0.02
Kp KP transconductance coefficient A/V2 2 · 10−5 6 · 10−5

Gamma γ bulk threshold
√
V 0.0 0.37

Phi Φ surface potential V 0.6 0.65
Rd RD drain ohmic resistance Ω 0.0 1.0
Rs RS source ohmic resistance Ω 0.0 1.0
Rg RG gate ohmic resistance Ω 0.0
L L channel length m 100µ

Ld LD lateral diffusion length m 0.0 10−7

W W channel width m 100µ
Tox TOX oxide thickness m 0.1µ 2 · 10−8

Cgso CGSO gate-source overlap capacitance per me-
ter of channel width

F/m 0.0 4 · 10−11

Cgdo CGDO gate-drain overlap capacitance per me-
ter of channel width

F/m 0.0 4 · 10−11

Cgbo CGBO gate-bulk overlap capacitance per me-
ter of channel length

F/m 0.0 2 · 10−10
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Name Symbol Description Unit Default Typical
Cbd CBD zero-bias bulk-drain junction capaci-

tance
F 0.0 6 · 10−17

Cbs CBS zero-bias bulk-source junction capaci-
tance

F 0.0 6 · 10−17

Pb ΦB bulk junction potential V 0.8 0.87
Mj MJ bulk junction bottom grading coeffi-

cient
0.5 0.5

Fc FC bulk junction forward-bias depletion ca-
pacitance coefficient

0.5

Cjsw CJSW zero-bias bulk junction periphery ca-
pacitance per meter of junction perime-
ter

F/m 0.0

Mjsw MJSW bulk junction periphery grading coeffi-
cient

0.33 0.33

Tt TT bulk transit time s 0.0
Kf KF flicker noise coefficient 0.0
Af AF flicker noise exponent 1.0
Ffe FFE flicker noise frequency exponent 1.0

Nsub NSUB substrate (bulk) doping density 1/cm3 0.0 4 · 1015
Nss NSS surface state density 1/cm2 0.0 1010

Tpg TPG gate material type (0 = alumina, -1 =
same as bulk, 1 = opposite to bulk)

1

Uo µ0 surface mobility cm2/Vs 600.0 400.0
Rsh RSH drain and source diffusion sheet resis-

tance
Ω/square 0.0 10.0

Nrd NRD number of equivalent drain squares 1
Nrs NRS number of equivalent source squares 1
Cj CJ zero-bias bulk junction bottom capaci-

tance per square meter of junction area
F/m2 0.0 2 · 10−4

Js JS bulk junction saturation current per
square meter of junction area

A/m2 0.0 10−8

Ad AD drain diffusion area m2 0.0
As AS source diffusion area m2 0.0
Pd PD drain junction perimeter m 0.0
Ps PS source junction perimeter m 0.0

Temp T device temperature ◦C 26.85
Tnom TNOM parameter measurement temperature ◦C 26.85

10.5.1 Large signal model
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Figure 10.18: n-channel MOSFET large signal model

Beforehand some useful abbreviation are made to simplify the DC current equations.

Leff = L− 2 ·LD (10.167)

β = KP ·
W

Leff
(10.168)

The bias-dependent threshold voltage depends on the bulk-source voltage VBS or the bulk-drain
voltage VBD depending on the mode of operation.

VTh = VT0 +







γ ·
(√

Φ− VBS −
√
Φ
)

for VDS ≥ 0, i.e. VBS ≥ VBD

γ ·
(√

Φ− VBD −
√
Φ
)

for VDS < 0, i.e. VBD > VBS

(10.169)

The following equations describe the DC current behaviour of a N-channel MOSFET in normal
mode, i.e. VDS > 0, according to Shichman and Hodges.

• cutoff region: VGS − VTh < 0

Id = 0 (10.170)

gds = 0 (10.171)

gm = 0 (10.172)

gmb = 0 (10.173)
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• saturation region: 0 < VGS − VTh < VDS

Id = β/2 · (1 + λVDS) · (VGS − VTh)
2

(10.174)

gds = β/2 ·λ (VGS − VTh)
2

(10.175)

gm = β · (1 + λVDS) (VGS − VTh) (10.176)

gmb = gm ·
γ

2
√
Φ− VBS

(10.177)

• linear region: VDS < VGS − VTh

Id = β · (1 + λVDS) · (VGS − VTh − VDS/2) ·VDS (10.178)

gds = β · (1 + λVDS) · (VGS − VTh − VDS) + β ·λVDS · (VGS − VTh − VDS/2) (10.179)

gm = β · (1 + λVDS) ·VDS (10.180)

gmb = gm ·
γ

2
√
Φ− VBS

(10.181)

with

gds =
∂Id
∂VDS

and gm =
∂Id
∂VGS

and gmb =
∂Id
∂VBS

(10.182)

In the inverse mode of operation, i.e. VDS < 0, the same equations can be applied with the
following modifications. Replace VBS with VBD, VGS with VGD and VDS with −VDS . The drain
current Id gets reversed. Furthermore the transconductances alter their controlling nodes, i.e.

gm =
∂Id

∂VGD
and gmb =

∂Id
∂VBD

(10.183)

The current equations of the two parasitic diodes at the bulk node and their derivatives write as
follows.

IBD = ISD ·
(

e
VBD

N ·VT − 1

)

gbd =
∂IBD

∂VBD
=

ISD

N ·VT
· e

VBD
N ·VT (10.184)

IBS = ISS ·
(

e
VBS

N · VT − 1

)

gbs =
∂IBS

∂VBS
=

ISS

N ·VT
· e

VBS
N ·VT (10.185)

with
ISD = IS and ISS = IS (10.186)
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Figure 10.19: accompanied DC model of intrinsic MOSFET

With the accompanied DC model shown in fig. 10.19 it is possible to form the MNA matrix and
the current vector of the intrinsic MOSFET device.







0 0 0 0
gm gds + gbd −gds − gm − gmb gmb − gbd
−gm −gds gbs + gds + gm + gmb −gbs − gmb

0 −gbd −gbs gbs + gbd






·







VG

VD

VS

VB






=







0
+IBDeq

− IDSeq

+IBSeq
+ IDSeq

−IBDeq
− IBSeq







(10.187)

IBDeq
= IBD − gbd ·VBD (10.188)

IBSeq
= IBS − gbs ·VBS (10.189)

IDSeq
= Id − gm ·VGS − gmb ·VBS − gds ·VDS (10.190)

10.5.2 Physical model

There are electrical parameters as well as physical and geometry parameters in the set of model
parameters for the MOSFETs “First Order Model”. Some of the electrical parameters can be
derived from the geometry and physical parameters.

The oxide capacitance per square meter of the channel area can be computed as

C′
ox = ε0 ·

εox
Tox

with εox = εSiO2 = 3.9 (10.191)

Then the overall oxide capacitance can be written as

Cox = C′
ox ·W ·Leff (10.192)

The transconductance coefficient KP can be calculated using

KP = µ0 ·C′
ox (10.193)
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The surface potential Φ is given by (with temperature voltage VT )

Φ = 2 ·VT · ln
(
NSUB

ni

)

with the intrinsic density ni = 1.45 ·10161/m3 (10.194)

Equation (10.194) holds for acceptor concentrations NA (NSUB) essentially greater than the
donor concentration ND. The bulk threshold γ (also sometimes called the body effect coefficient)
is

γ =

√
2 · e · εSi · ε0 ·NSUB

C′
ox

with εSi = 11.7 (10.195)

And finally the zero-bias threshold voltage VT0 writes as follows.

VT0 = VFB +Φ + γ ·
√
Φ (10.196)

Whereas VFB denotes the flat band voltage consisting of the work function difference ΦMS

between the gate and substrate material and an additional potential due to the oxide surface
charge.

VFB = ΦMS −
e ·NSS

C′
ox

(10.197)

The temperature dependent bandgap potential EG of silicon (substrate material Si) writes as
follows. With T = 290K the bandgap is approximately 1.12eV .

EG (T ) = 1.16− 7.02 ·10−4 ·T 2

T + 1108
(10.198)

The work function difference ΦMS gets computed dependent on the gate conductor material.
This can be either alumina (ΦM = 4.1eV ), n-polysilicon (ΦM ≈ 4.15eV ) or p-polysilicon (ΦM ≈
5.27eV ). The work function of a semiconductor, which is the energy difference between the
vacuum level and the Fermi level (see fig. 10.20), varies with the doping concentration.

ΦMS = ΦM − ΦS = ΦM −
(

4.15 +
1

2
EG +

1

2
Φ

)

(10.199)

ΦM =







4.1 for TPG = +0, i.e. alumina

4.15 for TPG = +1, i.e. opposite to bulk

4.15 + EG for TPG = −1, i.e. same as bulk

(10.200)
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Figure 10.20: energy band diagrams of isolated (flat band) MOS materials

The expression in eq. (10.199) is visualized in fig. 10.20. The abbreviations denote

χAl electron affinity of alumina = 4.1eV
χSi electron affinity of silicon = 4.15eV
E0 vacuum level
EC conduction band
EV valence band
EF Fermi level
EI intrinsic Fermi level
EG bandgap of silicon ≈ 1.12eV at room temperature

Please note that the potential 1/2 ·Φ is positive in p-MOS and negative in n-MOS as the following
equation reveals.

ΦF =
EF − EI

e
(10.201)

When the gate conductor material is a heavily doped polycrystalline silicon (also called polysil-
icon) then the model assumes that the Fermi level of this semiconductor is the same as the
conduction band (for n-poly) or the valence band (for p-poly). In alumina the Fermi level,
valence and conduction band all equal the electron affinity.

If the zero-bias bulk junction bottom capacitance per square meter of junction area CJ is not
given it can be computed as follows.

CJ =

√
εSi · ε0 · e ·NSUB

2 ·ΦB
(10.202)

That’s it for the physical parameters. The geometry parameters account for the electrical pa-
rameters per length, area or volume. Thus the MOS model is scalable.

The diffusion resistances at drain and gate are computed as follows. The sheet resistance RSH

refers to the thickness of the diffusion area.

RD = NRD ·RSH and RS = NRS ·RSH (10.203)

If the bulk junction saturation current per square meter of the junction area JS and the drain
and source areas are given the according saturation currents are calculated with the following
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equations.
ISD = AD · JS and ISS = AS · JS (10.204)

If the parameters CBD and CBS are not given the zero-bias depletion capacitances for the bottom
and sidewall capacitances are computed as follows.

CBD = CJ ·AD (10.205)

CBS = CJ ·AS (10.206)

CBDS = CJSW ·PD (10.207)

CBSS = CJSW ·PS (10.208)

10.5.3 Small signal model

g VBSmbG

D

S
CGB

gmVGS

CGD

B

gbd

gbs

g
ds

CGS

C

CBD

BS

Figure 10.21: small signal model of intrinsic MOSFET

The bulk-drain and bulk-source capacitances in the MOSFET model split into three parts: the
junctions depletion capacitance which consists of an area and a sidewall part and the diffusion
capacitance.
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CBDdep
=







CBD ·
(

1− VBD

ΦB

)−MJ

for VBD ≤ FC ·ΦB

CBD

(1− FC)
MJ
·
(

1 +
MJ · (VBD − FC ·ΦB)

ΦB · (1− FC)

)

for VBD > FC ·ΦB

(10.209)

CBDSdep
=







CBDS ·
(

1− VBD

ΦB

)−MJSW

for VBD ≤ FC ·ΦB

CBDS

(1− FC)
MJSW

·
(

1 +
MJSW · (VBD − FC ·ΦB)

ΦB · (1− FC)

)

for VBD > FC ·ΦB

(10.210)

CBSdep
=







CBS ·
(

1− VBS

ΦB

)−MJ

for VBS ≤ FC ·ΦB

CBS

(1− FC)
MJ
·
(

1 +
MJ · (VBS − FC ·ΦB)

ΦB · (1− FC)

)

for VBS > FC ·ΦB

(10.211)

CBSSdep
=







CBSS ·
(

1− VBS

ΦB

)−MJSW

for VBS ≤ FC ·ΦB

CBSS

(1− FC)
MJSW

·
(

1 +
MJSW · (VBS − FC ·ΦB)

ΦB · (1− FC)

)

for VBS > FC ·ΦB

(10.212)

The diffusion capacitances of the bulk-drain and bulk-source junctions are determined by the
transit time of the minority charges through the junction.

CBDdiff
= gbd ·TT (10.213)

CBSdiff
= gbs ·TT (10.214)

Charge storage in the MOSFET consists of capacitances associated with parasitics and the
intrinsic device. Parasitic capacitances consist of three constant overlap capacitances. The
intrinsic capacitances consist of the nonlinear thin-oxide capacitance, which is distributed among
the gate, drain, source and bulk regions. The MOS gate capacitances, as a nonlinear function of
the terminal voltages, are modeled by J.E. Meyer’s piece-wise linear model [15].

The bias-dependent gate-oxide capacitances distribute according to the Meyer model [15] as
follows.

• cutoff regions: VGS − VTh < 0

– VGS − VTh ≤ −Φ
CGS = 0 (10.215)

CGD = 0 (10.216)

CGB = Cox (10.217)

– −Φ < VGS − VTh ≤ −Φ/2

CGS = 0 (10.218)

CGD = 0 (10.219)

CGB = −Cox ·
VGS − VTh

Φ
(10.220)
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– −Φ/2 < VGS − VTh ≤ 0

CGS =
2

3
·Cox +

4

3
·Cox ·

VGS − VTh

Φ
(10.221)

CGD = 0 (10.222)

CGB = −Cox ·
VGS − VTh

Φ
(10.223)

• saturation region: 0 < VGS − VTh < VDS

CGS =
2

3
·Cox (10.224)

CGD = 0 (10.225)

CGB = 0 (10.226)

• linear region: VDS < VGS − VTh

CGS =
2

3
·Cox ·

(

1− (VDsat − VDS)
2

(2 ·VDsat − VDS)
2

)

(10.227)

CGD =
2

3
·Cox ·

(

1− V 2
Dsat

(2 ·VDsat − VDS)
2

)

(10.228)

CGB = 0 (10.229)

with

VDsat =

{

VGS − VTh for VGS − VTh > 0

0 otherwise
(10.230)

In the inverse mode of operation VGS and VGD need to be exchanged, VDS changes its sign, then
the above formulas can be applied as well.

The constance overlap capacitances compute as follows.

CGSOV L
= CGSO ·W (10.231)

CGDOV L
= CGDO ·W (10.232)

CGBOV L
= CGBO ·Leff (10.233)

With these definitions it is possible to form the small signal Y-parameter matrix of the intrinsic
MOSFET device in an operating point which can be converted into S-parameters.

Y =










YGS +
YGD + YGB

−YGD −YGS −YGB

gm − YGD YGD + YBD + YDS −YDS − gm − gmb −YBD + gmb

−gm − YGS −YDS YGS + YDS +
YBS + gm + gmb

−YBS − gmb

−YGB −YBD −YBS YBD + YBS + YGB










(10.234)
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with

YGS = jω (CGS + CGSOV L
) (10.235)

YGD = jω (CGD + CGDOV L
) (10.236)

YGB = jω (CGB + CGBOV L
) (10.237)

YBD = gbd + jω
(
CBDdep

+ CBDSdep
+ CBDdiff

)
(10.238)

YBS = gbs + jω
(
CBSdep

+ CBSSdep
+ CBSdiff

)
(10.239)

YDS = gds (10.240)

10.5.4 Noise model

The thermal noise generated by the external resistors RG, RS and RD is characterized by the
following spectral density.

i2RG

∆f
=

4kBT

RG
and

i2RD

∆f
=

4kBT

RD
and

i2RS

∆f
=

4kBT

RS
(10.241)
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g
ds

Figure 10.22: noise model of intrinsic MOSFET

Channel and flicker noise generated by the DC transconductance gm and current flow from drain
to source is characterized by the spectral density

i2ds
∆f

=
8kBTgm

3
+KF

IAF

DS

fFFE
(10.242)

The noise current correlation matrix (admittance representation) of the intrinsic MOSFET can
be expressed as

CY = ∆f







0 0 0 0

0 +i2ds −i2ds 0

0 −i2ds +i2ds 0
0 0 0 0







(10.243)
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This matrix representation can be easily converted to the noise-wave representation CS if the
small signal S-parameter matrix is known.

10.5.5 Temperature model

Temperature affects some MOS model parameters which are updated according to the new
temperature. The reference temperature T1 in the following equations denotes the nominal
temperature TNOM specified by the MOS transistor model. The temperature dependence of KP

and µ0 is determined by

KP (T2) = KP (T1) ·
(
T1

T2

)1.5

(10.244)

µ0 (T2) = µ0 (T1) ·
(
T1

T2

)1.5

(10.245)

The effect of temperature on ΦB and Φ is modeled by

Φ (T2) =
T2

T1
·Φ (T1)−

2 · kB ·T2

e
· ln

(
T2

T1

)1.5

−
(
T2

T1
·EG (T1)− EG (T2)

)

(10.246)

where the EG (T ) dependency has already been described in section 10.2.4 on page 122. The
temperature dependence of CBD, CBS , CJ and CJSW is described by the following relations

CBD (T2) = CBD (T1) ·
(

1 +MJ ·
(

400 ·10−6 · (T2 − T1)−
ΦB (T2)− ΦB (T1)

ΦB (T1)

))

(10.247)

CBS (T2) = CBS (T1) ·
(

1 +MJ ·
(

400 ·10−6 · (T2 − T1)−
ΦB (T2)− ΦB (T1)

ΦB (T1)

))

(10.248)

CJ (T2) = CJ (T1) ·
(

1 +MJ ·
(

400 ·10−6 · (T2 − T1)−
ΦB (T2)− ΦB (T1)

ΦB (T1)

))

(10.249)

CJSW (T2) = CJSW (T1) ·
(

1 +MJSW ·
(

400 ·10−6 · (T2 − T1)−
ΦB (T2)− ΦB (T1)

ΦB (T1)

))

(10.250)

The temperature dependence of IS is given by the relation

IS (T2) = IS (T1) · exp
[

− e

kB ·T2
·
(
T2

T1
·EG (T1)− EG (T2)

)]

(10.251)

An analogue dependence holds for JS .

10.6 Models for boolean devices

Logical (boolean) functions (OR, AND, XOR etc.) can be modeled using macro models. Here,
each input gets the transfer characteristic and its derivative described as follows:

ui = tanh(10 · (uin − 0.5)) (10.252)

u′
i = 10 ·

(
1− tanh2(10 · (uin − 0.5))

)
(10.253)
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The resulting voltages ui for each input are combined to create the wanted function for a device
with N inputs:

Inverter: uout = 0.5 · (1− ui) (10.254)

NOR: uout =
N

∑

m

2

1− ui,m

(10.255)

OR: uout = 1− uout,NOR (10.256)

AND: uout =
N

∑

m

2

1 + ui,m

(10.257)

NAND: uout = 1− uout,AND (10.258)

XOR: uout = 0.5 ·
(

1−
∏

m

−ui,m

)

(10.259)

XNOR: uout = 0.5 ·
(

1 +
∏

m

ui,m

)

(10.260)

The above-mentioned functions model devices with 0V as logical low-level and 1V as logical high-
level. Of course, they can be easily transformed into higher voltage levels by multiplying the
desired high-level voltage to the output voltage uout and dividing the input voltages uin by the
desired high-level voltage. Note: The derivatives also get uin divided by the desired high-level
voltage, but they are not multiplied by the desired high-level voltage.

To perform a simulation on these devices, the first derivatives are also needed:

Inverter:
∂uout

∂uin
= −0.5 ·u′

i (10.261)

OR:
∂uout

∂uin,n
=

2 ·N ·u′
i,n

(

(1− ui,n) ·
∑

m

2

1− ui,m

)2 (10.262)

NOR:
∂uout

∂uin,n
= − ∂uout

∂uin,n

∣
∣
∣
∣
OR

(10.263)

AND:
∂uout

∂uin,n
=

2 ·N ·u′
i,n

(

(1 + ui,n) ·
∑

m

2

1 + ui,m

)2 (10.264)

NAND:
∂uout

∂uin,n
= − ∂uout

∂uin,n

∣
∣
∣
∣
AND

(10.265)

XOR:
∂uout

∂uin,n
= 0.5 ·u′

i,n ·
∏

m 6=n

−ui,m (10.266)

XNOR:
∂uout

∂uin,n
= 0.5 ·u′

i,n ·
∏

m 6=n

ui,m (10.267)

A problem of these macro models are the numbers of input ports. The output voltage levels
worsen with increasing number of ports. The practical limit lies around eight input ports.
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With that knowledge it is now easy to create the MNA matrix. The first port is the output port
of the device. So, for a 2-input port device, it is:







. . . 1

. . . 0

. . . 0
−1 ∂uout/∂uin,1 ∂uout/∂uin,1 0






·







Vout

Vin,1

Vin,2

Iout






=







I0
I1
I2
0







(10.268)

The above MNA matrix entries are also used during the non-linear DC and transient analysis
with the 0 in the right hand side vector replaced by an equivalent voltage

Veq =
∂uout

∂uin,1
·Vin,1 +

∂uout

∂uin,2
·Vin,2 − uout (10.269)

with uout computed using equations (10.254) to (10.260).

With the given small-signal matrix representation, building the S-parameters is easy.

(S) =





−1 4 ·∂uout/∂uin,1 4 ·∂uout/∂uin,2

0 1 0
0 0 1



 (10.270)

These matrices can easily extended to any number of input ports.

10.7 Equation defined models

Often it will happen that a user needs to implement his own model. Therefore, it is useful to
supply devices that are defined by arbitrary equations.

10.7.1 Models with Explicit Equations

For example the user must enter an equation i(V ) describing how the port current I depends on
the port voltage V = V1 − V2 and an equation q(V ) describing how much charge Q is held due
to the voltage V . These are time domain equations. The most simple way then is a device with
two nodes. Defining

I = i(V ) and g =
∂I

∂V
= lim

h→0

I(V + h)− I(V )

h
(10.271)

as well as

Q = q(V ) and c =
∂Q

∂V
= lim

h→0

Q(V + h)−Q(V )

h
(10.272)

the MNA matrix for a (non-linear) DC analysis writes:

[
+g(m) −g(m)

−g(m) +g(m)

]

·
[

V
(m+1)
1

V
(m+1)
2

]

=

[
−I(m) + g(m) ·V (m)

+I(m) − g(m) ·V (m)

]

=

[

−I(m) + g(m) · (V (m)
1 − V

(m)
2 )

+I(m) − g(m) · (V (m)
1 − V

(m)
2 )

] (10.273)

For a transient simulation, equation (6.89) on page 64 has to be used with Q and c.
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For an AC analysis the MNA matrix writes:

(Y ) = (g + jω · c) ·
[
+1 −1
−1 +1

]

(10.274)

And the S-parameter matrix writes:

S11 = S22 =
1

2 ·Z0 ·Y + 1
(10.275)

S12 = S21 = 1− S11 (10.276)

Y = g + jω · c (10.277)

The simulator needs to create the derivatives g and c by its own. This can be done numerically
or symbolically. One might ask why the non-linear capacitance is modeled as charge, not as
capacitance. Indeed this may be changed, but with a computer algorithm, creating the derivative
is easier than to integrate.

The component described above can be expanded to one with two ports (two pairs of terminals:
terminal 1 and 2 and terminal 3 and 4). That is, the currents and charges of both ports depend
on both port voltages V12 = V1 − V2 and V34 = V3 − V4. Thus, the defining equations are:

I1 = i1(V12, V34) and g11 =
∂I1
∂V12

and g12 =
∂I1
∂V34

(10.278)

I2 = i2(V12, V34) and g21 =
∂I2
∂V12

and g22 =
∂I2
∂V34

(10.279)

as well as

Q1 = q1(V12, V34) and c11 =
∂Q1

∂V12
and c12 =

∂Q1

∂V34
(10.280)

Q2 = q2(V12, V34) and c21 =
∂Q2

∂V12
and c22 =

∂Q2

∂V34
(10.281)

The MNA matrix for the DC analysis writes:








+g
(m)
11 −g(m)

11 +g
(m)
12 −g(m)

12

−g(m)
11 +g

(m)
11 −g(m)

12 +g
(m)
12

+g
(m)
21 −g(m)

21 +g
(m)
22 −g(m)

22

−g(m)
21 +g

(m)
21 −g(m)

22 +g
(m)
22







·








V
(m+1)
1

V
(m+1)
2

V
(m+1)
3

V
(m+1)
4







=








−I(m)
1 + g

(m)
11 ·V

(m)
12 + g

(m)
12 ·V

(m)
34

+I
(m)
1 − g

(m)
11 ·V

(m)
12 − g

(m)
12 ·V

(m)
34

−I(m)
2 + g

(m)
21 ·V

(m)
12 + g

(m)
22 ·V

(m)
34

+I
(m)
2 − g

(m)
21 ·V

(m)
12 − g

(m)
22 ·V

(m)
34








(10.282)
For a transient simulation, the DC equations have to be extended by the non-linear (trans-)
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capacitances, e.g. for backward Euler:

In+1,m
C11 =

c11(V
n+1,m
12 )

hn
︸ ︷︷ ︸

geq,11

·V n+1
12 −c11(V

n
12)

hn
·V n

12
︸ ︷︷ ︸

Ieq,11

(10.283)

In+1,m
C12 =

c12(V
n+1,m
12 )

hn
︸ ︷︷ ︸

geq,12

·V n+1
12 −c12(V

n
12)

hn
·V n

12
︸ ︷︷ ︸

Ieq,12

(10.284)

In+1,m
C21 =

c21(V
n+1,m
34 )

hn
︸ ︷︷ ︸

geq,21

·V n+1
34 −c21(V

n
34)

hn
·V n

34
︸ ︷︷ ︸

Ieq,21

(10.285)

In+1,m
C22 =

c22(V
n+1,m
34 )

hn
︸ ︷︷ ︸

geq,22

·V n+1
34 −c22(V

n
34)

hn
·V n

34
︸ ︷︷ ︸

Ieq,22

(10.286)

So with gtr = g + geq it is:







+g
(m)
tr,11 −g(m)

tr,11 +g
(m)
tr,12 −g(m)

tr,12

−g(m)
tr,11 +g

(m)
tr,11 −g(m)

tr,12 +g
(m)
tr,12

+g
(m)
tr,21 −g(m)

tr,21 +g
(m)
tr,22 −g(m)

tr,22

−g(m)
tr,21 +g

(m)
tr,21 −g(m)

tr,22 +g
(m)
tr,22







·








V
(n+1,m+1)
1

V
(n+1,m+1)
2

V
(n+1,m+1)
3

V
(n+1,m+1)
4








=








−I(m)
1 + g

(m)
11 ·V

(m)
12 + g

(m)
12 ·V

(m)
34 − I

(n)
eq,11 − I

(n)
eq,12

+I
(m)
1 − g

(m)
11 ·V

(m)
12 − g

(m)
12 ·V

(m)
34 + I

(n)
eq,12 + I

(n)
eq,12

−I(m)
2 + g

(m)
21 ·V

(m)
12 + g

(m)
22 ·V

(m)
34 − I

(n)
eq,21 − I

(n)
eq,22

+I
(m)
2 − g

(m)
21 ·V

(m)
12 − g

(m)
22 ·V

(m)
34 + I

(n)
eq,21 + I

(n)
eq,22








(10.287)

For an AC analysis the MNA matrix writes:

(Y ) =







+g11 + jω · c11 −g11 − jω · c11 +g12 + jω · c12 −g12 − jω · c12
−g11 − jω · c11 +g11 + jω · c11 −g12 − jω · c12 +g12 + jω · c12
+g21 + jω · c21 −g21 − jω · c21 +g22 + jω · c22 −g22 − jω · c22
−g21 − jω · c21 +g21 + jω · c21 −g22 − jω · c22 +g22 + jω · c22







(10.288)

As can bee seen, this scheme can be expanded to any number of ports. The matrices soon
become quite complex, but fortunately modern computers are able to cope with this complexity.
S-parameters must be obtained numerical by setting equation 10.288 into equation 15.7.

10.7.2 Models with Implicit Equations

The above-mentioned explicit models are not useable for all components. If the Y-parameters
do not exist or if the equations cannot be analytically transformed into the explicit form, then
an implicit representation must be taken. hat is, for a one-port (two-terminal) component the
following formulas are defined by the user:

0 = f(V, I) and gV =
∂f(V, I)

∂V
= lim

h→0

f(V + h, I)− f(V, I)

h
(10.289)

and gI =
∂f(V, I)

∂I
= lim

h→0

f(V, I + h)− f(V, I)

h
(10.290)

157



The MNA matrix for the AC analysis writes as follows:





. . +1

. . −1
+gV −gV gI



 ·





V1

V2

Iout



 =





0
0
0



 (10.291)

As usual, for the DC analysis the last zero on the right hand side has to be replaced by the
iteration formula:

gV · (V1 − V2) + gI · Iout − f(V1 − V2, Iout) (10.292)

The S-parameters are:

S11 = S22 =
gI

gI − 2 ·Z0 · gV
(10.293)

S12 = S21 = 1− S11 (10.294)

Consequently, for a two-port device two equation are necessary: One for first port and one for
second port:

0 = f1(V12, V34, I1, I2) (10.295)

0 = f2(V12, V34, I1, I2) (10.296)

Building the MNA matrix is again straight forward:











. . . . +1 0

. . . . −1 0

. . . . 0 +1

. . . . 0 −1
+gf1,V 12 −gf1,V 12 +gf1,V 34 −gf1,V 34 gf1,I1 gf1,I2
+gf2,V 12 −gf2,V 12 +gf2,V 34 −gf2,V 34 gf2,I1 gf2,I2











·













V
(m+1)
1

V
(m+1)
2

V
(m+1)
3

V
(m+1)
4

I
(m+1)
out1

I
(m+1)
out2













=

[
gf1,V 12 ·V12 + gf1,V 34 ·V34 + gf1,I1 · Iout1 + gf1,I2 · Iout2 − f1(V12, V34, Iout1, Iout2)
gf2,V 12 ·V12 + gf2,V 34 ·V34 + gf2,I1 · Iout1 + gf2,I2 · Iout2 − f2(V12, V34, Iout1, Iout2)

]

(10.297)

Once more, this concept can easily expanded to any number of ports. It is also possible mix
implicit and explicit definitions, i.e. some ports of the device may be defined by explicit equations
whereas the others are defined by implicit equations.

The calculation of the S-parameters is not that trival. The Y-parameters as well as the Z-
parameters might be infinite. A small trick can avoid this problem, as will be shown in the
following 2-port example. First, the small-signal Y-parameters should be derived by using the
law about implicit functions:

(J) =

(
y11 y12
y21 y22

)

= −






∂f1
∂I1

∂f1
∂I2

∂f2
∂I1

∂f2
∂I2






︸ ︷︷ ︸

Ji

−1

·






∂f1
∂V1

∂f1
∂V2

∂f2
∂V1

∂f2
∂V2






︸ ︷︷ ︸

Jv

(10.298)

The equation reveals immediately the difficulty: The inverse of the current Jocobi matrix Ji may
not exist. But this problem can be outsourced to one single scalar number by using Cramer’s
rule for matrix inversion:
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J−1
i =

1

∆Ji
·AJi (10.299)

The matrix AJi is built of the sub-determinantes of Ji in the way that a(n,m) is the determinante
of Ji without row m and without column n but multiplied with (−1)n+m. It therefore always
exists, whereas dividing by the determinante of Ji may become infinity. Now parameters can be
defined as follows:

(J ′) =

(
y′11 y′12
y′21 y′22

)

= −AJi · Jv (10.300)

Before converting to S-parameters the matrix must be expanded to a 4-port matrix, because the
2-ports are not referenced to ground:

(J ′′) =







+y′11 −y′11 +y′12 −y′12
−y′11 +y′11 −y′12 +y′12
+y′21 −y′21 +y′22 −y′22
−y′21 +y′21 −y′22 +y′22







= −A′
Ji · J ′

v (10.301)

Finally, equation (15.7) converts the parameters to S-parameters:

(S) = ((E)− Z0 · (Y )) · ((E) + Z0 · (Y ))
−1

(10.302)

=

(

(E) + Z0 ·
1

∆Ji
·A′

Ji · J ′
v

)

·
(

(E)− Z0 ·
1

∆Ji
·A′

Ji · J ′
v

)−1

(10.303)

= (∆Ji · (E) + Z0 ·A′
Ji · J ′

v) · (∆Ji · (E)− Z0 ·A′
Ji · J ′

v)
−1

(10.304)

The calculations proofs that the critical factor 1/∆Ji disappears and a solution exists if and only
if the S-parameters of this device exist.
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Chapter 11

Microstrip components

11.1 Single microstrip line

h

t

W l

Figure 11.1: single microstrip line

The electrical parameters of microstrip lines which are required for circuit design are impedance,
attenuation, wavelength and propagation constant. These parameters are interrelated for all
microstrips assuming that the propagation mode is a transverse electromagnetic mode, or it can
be approximated by a transverse electromagnetic mode. The Y and S parameters can be found
in section 9.21.

11.1.1 Quasi-static characteristic impedance

Wheeler

Harold A. Wheeler [16] formulated his synthesis and analysis equations based upon a conformal
mapping’s approximation of the dielectric boundary with parallel conductor strips separated by
a dielectric sheet.
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For wide strips (W/h > 3.3) he obtains the approximation

ZL (W,h, εr) =
ZF0

2
√
εr
· 1

W

2h
+

1

π
ln 4 +

εr + 1

2πεr
ln

(
πe

2

(
W

2h
+ 0.94

))

+
εr − 1

2πε2r
· ln eπ2

16

(11.1)

For narrow strips (W/h ≤ 3.3) he obtains the approximation

ZL (W,h, εr) =
ZF0

π
√

2 (εr + 1)
·



ln




4h

W
+

√
(
4h

W

)2

+ 2



− 1

2
· εr − 1

εr + 1

(

ln
π

2
+

1

εr
ln

4

π

)




(11.2)
The formulae are applicable to alumina-type substrates (8 ≤ εr ≤ 12) and have an estimated
relative error less than 1 per cent.
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Figure 11.2: characteristic impedance as approximated by Hammerstad for εr = 1.0 (air), 3.78
(quartz) and 9.5 (alumina)

Schneider

The following formulas obtained by rational function approximation give accuracy of ±0.25%
for 0 ≤ W/h ≤ 10 which is the range of importance for most engineering applications. M.V.
Schneider [17] found these approximations for the complete elliptic integrals of the first kind as
accurate as ±1% for W/h > 10.
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ZL =
ZF0√
εreff

·







1

2π
· ln

(
8 ·h
W

+
W

4 ·h

)

for
W

h
≤ 1

1

W

h
+ 2.42− 0.44 · h

W
+

(

1− h

W

)6 for
W

h
> 1

(11.3)

Hammerstad and Jensen

The equations for the single microstrip line presented by E. Hammerstad and Ø. Jensen [18]
are based upon an equation for the impedance of microstrip in an homogeneous medium and an
equation for the microstrip effective dielectric constant. The obtained accuracy gives errors at
least less than those caused by physical tolerances and is better than 0.01% for W/h ≤ 1 and
0.03% for W/h ≤ 1000.

ZL1 (W,h) =
ZF0

2π
· ln



fu
h

W
+

√

1 +

(
2h

W

)2


 (11.4)

ZL (W,h, εr) =
ZL1 (W,h)√

εr
=

ZF0

2π ·√εr
· ln



fu
h

W
+

√

1 +

(
2h

W

)2


 (11.5)

with

fu = 6 + (2π − 6) · exp
(

−
(

30.666 · h
W

)0.7528
)

(11.6)

The comparison of the expression given for the quasi-static impedance as shown in fig. 11.3 has
been done with respect to E. Hammerstad and Ø. Jensen. It reveals the advantage of closed-form
expressions. The impedance step for Wheelers formulae at W/h = 3.3 is approximately 0.1Ω.
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Hammerstad and Jensen

Schneider

Wheeler
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Figure 11.3: characteristic impedance in comparison for εr = 9.8

11.1.2 Quasi-static effective dielectric constant

Wheeler

Harold A. Wheeler [19] gives the following approximation for narrow strips (W/h < 3) based
upon the characteristic impedance ZL. The estimated relative error is less than 1%.

εreff
=

εr + 1

2
+

ZF0

2πZL
· εr − 1

2
·
(

ln
π

2
+

1

εr
ln

4

π

)

(11.7)

For narrow strips (W/h ≤ 1.3):

εreff
=

1 + εr
2
·
(

A

A−B

)2

(11.8)

with

A = ln

(

8
h

W

)

+
1

32
·
(
W

h

)2

(11.9)

B =
1

2
· εr − 1

εr + 1
·
(

ln
π

2
+

1

εr
ln

4

π

)

(11.10)

For wide strips (W/h > 1.3):

εreff
= εr ·

(
E −D

E

)2

(11.11)
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with

D =
εr − 1

2πεr
·
(

ln

(
πe

2

(
W

2h
+ 0.94

))

− 1

εr
ln

eπ2

16

)

(11.12)

E =
1

2
· W
h

+
1

π
· ln

(

πe
W

h
+ 16.0547

)

(11.13)

Schneider

The approximate function found by M.V. Schneider [17] is meant to have an accuracy of ±2%
for εreff

and an accuracy of ±1% for
√
εreff

.

εreff
=

εr + 1

2
+

εr − 1

2
· 1
√

1 + 10
h

W

(11.14)

Hammerstad and Jensen

The accuracy of the E. Hammerstad and Ø. Jensen [18] model is better than 0.2% at least for
εr < 128 and 0.01 ≤W/h ≤ 100.

εreff
(W,h, εr) =

εr + 1

2
+

εr − 1

2
·
(

1 + 10
h

W

)−ab

(11.15)

with

a (u) = 1 +
1

49
· ln

(

u4 + (u/52)
2

u4 + 0.432

)

+
1

18.7
· ln

(

1 +
( u

18.1

)3
)

(11.16)

b (εr) = 0.564 ·
(
εr − 0.9

εr + 3

)0.053

(11.17)

u =
W

h
(11.18)

11.1.3 Strip thickness correction

The formulas given for the quasi-static characteristic impedance and effective dielectric constant
in the previous sections are based upon an infinite thin microstrip line thickness t = 0. A finite
thickness t can be compensated by a reduction of width. That means a strip with the width W
and the finite thickness t appears to be a wider strip.

Wheeler

Harold A. Wheeler [19] proposes the following equation to account for the strip thickness effect
based on free space without dielectric.

∆W1 =
t

π
ln

4e
√
(
t

h

)2

+

(
1/π

W/t+ 1.10

)
(11.19)

For the mixed media case with dielectric he obtains the approximation

∆Wr =
1

2
∆W1

(

1 +
1

εr

)

(11.20)
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Schneider

M.V. Schneider [17] derived the following approximate expressions.

∆W =







t

π
·
(

1 + ln
4 ·π ·W

t

)

for
W

h
≤ 1

2π

t

π
·
(

1 + ln
2 ·h
t

)

for
W

h
>

1

2π

(11.21)

Additional restrictions for applying these expressions are t ≪ h, t < W/2 and t/∆W < 0.75.
Notice also that the ratio ∆W/t is divergent for t→ 0.

Hammerstad and Jensen

E. Hammerstad and Ø. Jensen are using the method described by Wheeler [19] to account for a
non-zero strip thickness. However, some modifications in his equations have been made, which
give better accuracy for narrow strips and for substrates with low dielectric constant. For the
homogeneous media the correction is

∆W1 =
t

h ·π ln




1 +

4e
t

h
· coth2

√
6.517W




 (11.22)

and for the mixed media the correction is

∆Wr =
1

2
∆W1

(
1 + sech

√
εr − 1

)
(11.23)

By defining corrected strip widths, W1 = W + ∆W1 and Wr = W + ∆Wr, the effect of strip
thickness may be included in the equations (11.4) and (11.15).

ZL (W,h, t, εr) =
ZL1 (Wr, h)

√
εreff

(Wr, h, εr)
(11.24)

εreff
(W,h, t, εr) = εreff

(Wr, h, εr) ·
(
ZL1 (W1, h)

ZL1 (Wr, h)

)2

(11.25)

11.1.4 Dispersion

Dispersion can be a strong effect in microstrip transmission lines due to their inhomogeneity.
Typically, as frequency is increased, εreff

increases in a non-linear manner, approaching an
asymptotic value. Dispersion affects characteristic impedance in a similar way.

Kirschning and Jansen

The dispersion formulae given by Kirschning and Jansen [20] is meant to have an accuracy better
than 0.6% in the range 0.1 ≤ W/h ≤ 100, 1 ≤ εr ≤ 20 and 0 ≤ h/λ0 ≤ 0.13, i.e. up to about
60GHz for 25mm substrates.

εr(f) = εr −
εr − εreff

1 + P (f)
(11.26)
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with

P (f) = P1P2 · ((0.1844 + P3P4) · fn)1.5763 (11.27)

P1 = 0.27488 +

(

0.6315 +
0.525

(1 + 0.0157 ·fn)20

)

· W
h
− 0.065683 · exp

(

−8.7513W
h

)

(11.28)

P2 = 0.33622 · (1− exp (−0.03442 ·εr)) (11.29)

P3 = 0.0363 · exp
(

−4.6W
h

)

·
(

1− exp

(

−
(

fn
38.7

)4.97
))

(11.30)

P4 = 1 + 2.751 ·
(

1− exp

(

−
( εr
15.916

)8
))

(11.31)

fn = f ·h = normalised frequency in [GHz ·mm] (11.32)

Dispersion of the characteristic impedance according to [21] can be applied for the range 0 ≤
h/λ0 ≤ 0.1, 0.1 ≤W/h ≤ 10 and for substrates with 1 ≤ εr ≤ 18 and is is given by the following
set of equations.

R1 = 0.03891 ·ε1.4r (11.33)

R2 = 0.267 ·u7.0 (11.34)

R3 = 4.766 · exp
(
−3.228 ·u0.641

)
(11.35)

R4 = 0.016 + (0.0514 · εr)4.524 (11.36)

R5 = (fn/28.843)
12.0

(11.37)

R6 = 22.20 ·u1.92 (11.38)

and

R7 = 1.206− 0.3144 · exp (−R1) · (1− exp (−R2)) (11.39)

R8 = 1 + 1.275 ·
(

1− exp
(
−0.004625 ·R3 · ε1.674r

)
· (fn/18.365)2.745

)

(11.40)

R9 = 5.086 · R4 ·R5

0.3838 + 0.386 ·R4
· exp (−R6)

1 + 1.2992 ·R5
· (εr − 1)

6

1 + 10 · (εr − 1)6
(11.41)

and

R10 = 0.00044 ·ε2.136r + 0.0184 (11.42)

R11 =
(fn/19.47)

6

1 + 0.0962 · (fn/19.47)6
(11.43)

R12 =
1

1 + 0.00245 ·u2
(11.44)

R13 = 0.9408 ·εr(f)R8 − 0.9603 (11.45)

R14 = (0.9408−R9) · εR8
reff
− 0.9603 (11.46)

R15 = 0.707 ·R10 · (fn/12.3)1.097 (11.47)

R16 = 1 + 0.0503 ·ε2r ·R11 ·
(

1− exp
(

− (u/15)6
))

(11.48)

R17 = R7 ·
(

1− 1.1241 · R12

R16
· exp

(
−0.026 ·f1.15656

n −R15

)
)

(11.49)
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Finally the frequency-dependent characteristic impedance can be written as

ZL(fn) = ZL(0) ·
(
R13

R14

)R17

(11.50)

The abbreviations used in these expressions are fn for the normalized frequency as denoted
in eq. (11.32) and u = W/h for the microstrip width normalised with respect to the substrate
height. The terms ZL(0) and εreff

denote the static values of microstrip characteristic impedance
and effective dielectric constant. The value εr(f) is the frequency dependent effective dielectric
constant computed according to [20].

R.H. Jansen and M. Kirschning remark in [21] for the implementation of the expressions on a
computer, R1, R2 and R6 should be restricted to numerical values less or equal 20 in order to
prevent overflow.

Yamashita

The values obtained by the approximate dispersion formula as given by E. Yamashita [22] deviate
within 1% in a wide frequency range compared to the integral equation method used to derive
the functional approximation. The formula assumes the knowledge of the quasi-static effective
dielectric constant. The applicable ranges of the formula are 2 < εr < 16, 0.06 < W/h < 16
and 0.1GHz < f < 100GHz. Though the lowest usable frequency is limited by 0.1GHz, the
propagation constant for frequencies less than 0.1GHz has been given as the quasi-static one.

εr(f) = εreff
·






1 +
1

4
· k ·F 1.5

1 +
1

4
·F 1.5






2

(11.51)

with

k =

√
εr

εreff

(11.52)

F =
4 ·h · f · √εr − 1

c0
·
(

0.5 +

(

1 + 2 · log
(

1 +
W

h

))2
)

(11.53)

Kobayashi

The dispersion formula presented by M. Kobayashi [23], derived by comparison to a numerical
model, has a high degree of accuracy, better than 0.6% in the range 0.1 ≤W/h ≤ 10, 1 < εr ≤ 128
and any h/λ0 (no frequency limits).

εr(f) = εr −
εr − εreff

1 +

(
f

f50

)m (11.54)
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with

f50 =
c0

2π ·h ·
(

0.75 +

(

0.75− 0.332

ε1.73r

)
W

h

) ·
arctan

(

εr ·
√

εreff
− 1

εr − εreff

)

√
εr − εreff

(11.55)

m = m0 ·mc (≤ 2.32) (11.56)

m0 = 1 +
1

1 +

√

W

h

+ 0.32 ·







1

1 +

√

W

h







3

(11.57)

mc =







1 +
1.4

1 +
W

h

·
(

0.15− 0.235 · exp
(

−0.45 f

f50

))

for W/h ≤ 0.7

1 for W/h ≥ 0.7

(11.58)

Getsinger

Based upon measurements of dispersion curves for microstrip lines on alumina substrates 0.025
and 0.050 inch thick W. J. Getsinger [24] developed a very simple , closed-form expression that
allow slide-rule prediction of microstrip dispersion.

εr(f) = εr −
εr − εreff

1 +G ·
(

f

fp

)2 (11.59)

with

fp =
ZL

2µ0h
(11.60)

G = 0.6 + 0.009 ·ZL (11.61)

Also based upon measurements of microstrip lines 0.1, 0.25 and 0.5 inch in width on a 0.250
inch thick alumina substrate Getsinger [25] developed two different dispersion models for the
characteristic impedance.

• wave impedance model published in [25]

ZL(f) = ZL ·
√

εreff

εr(f)
(11.62)

• group-delay model published in [26]

ZL(f) = ZL ·
√

εr(f)

εreff

· 1

1 +D(f)
(11.63)

with

D(f) =
(εr − εr(f)) ·

(
εr(f)− εreff

)

εr(f) ·
(
εr − εreff

) (11.64)
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Hammerstad and Jensen

The dispersion formulae of E. Hammerstad and Ø. Jensen [18] give good results for all types of
substrates (not as limited as Getsinger’s formulae). The impedance dispersion model is based
upon a parallel-plate model using the theory of dielectrics.

εr(f) = εr −
εr − εreff

1 +G ·
(

f

fp

)2 (11.65)

with

fp =
ZL

2µ0h
(11.66)

G =
π2

12
· εr − 1

εreff

·
√

2π ·ZL

ZF0
(11.67)

ZL(f) = ZL ·
√

εreff

εr(f)
· εr(f)− 1

εreff
− 1

(11.68)

Edwards and Owens

The authors T. C. Edwards and R. P. Owens [27] developed a dispersion formula based upon mea-
surements of microstrip lines on sapphire in the range 10Ω ≤ ZL ≤ 100Ω and up to 18GHz. The
procedure was repeated for several microstrip width-to-substrate-height ratios (W/h) between
0.1 and 10.

εr(f) = εr −
εr − εreff

1 + P
(11.69)

with

P =

(
h

ZL

)1.33

·
(
0.43f2 − 0.009f3

)
(11.70)

where h is in millimeters and f is in gigahertz. Their new dispersion equation involving the
polynomial, which was developed to predict the fine detail of the experimental εr(f) versus
frequency curves, includes two empicical parameters. However, it seems the formula is not too
sensitive to changes in substrate parameters.

Pramanick and Bhartia

P. Bhartia and P. Pramanick [28] developed dispersion equations without any empirical quantity.
Their work expresses dispersion of the dielectric constant and characteristic impedance in terms
of a single inflection frequency.

For the frequency-dependent relative dielectric constant they propose

εr(f) = εr −
εr − εreff

1 +

(
f

fT

)2 (11.71)

where

fT =

√
εr

εreff

· ZL

2µ0h
(11.72)
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Dispersion of the characteristic impedance is accounted by

ZL(f) =
ZF0 ·h

We(f) ·
√

εr(f)
(11.73)

whence

We(f) = W +
Weff −W

1 +

(
f

fT

)2 and Weff =
ZF0 ·h

ZL · √εreff

(11.74)

Schneider

Martin V. Schneider [29] proposed the following equation for the dispersion of the effective
dielectric constant of a single microstrip line. The estimated error is less than 3%.

εr(f) = εreff
·
(

1 + f2
n

1 + k · f2
n

)2

(11.75)

with

fn =
4h · f ·

√
εr − 1

c0
and k =

√
εreff

εr
(11.76)

For the dispersion of the characteristic impedance he uses the same wave guide impedance model
as Getsinger in his first approach to the problem.

ZL(f) = ZL ·
√

εreff

εr(f)
(11.77)

11.1.5 Transmission losses

The attenuation of a microstrip line consists of conductor (ohmic) losses, dielectric (substrate)
losses, losses due to radiation and propagation of surface waves and higher order modes.

α = αc + αd + αr + αs (11.78)

Dielectric losses

Dielectric loss is due to the effects of finite loss tangent tan δd. Basically the losses rise pro-
portional over the operating frequency. For common microwave substrate materials like Al2O3

ceramics with a loss tangent δd less than 10−3 the dielectric losses can be neglected compared to
the conductor losses.

For the inhomogeneous line, an effective dielectric filling fraction give that proportion of the
transmission line’s cross section not filled by air. For microstrip lines, the result is

αd =
εr√
εreff

· εreff
− 1

εr − 1
· π
λ0
· tan δd (11.79)

whereas

δd dielectric loss tangent
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Conductor losses

E. Hammerstad and Ø. Jensen [18] proposed the following equation for the conductor losses.
The surface roughness of the substrate is necessary to account for an asymptotic increase seen
in the apparent surface resistance with decreasing skin depth. This effect is considered by the
correction factor Kr. The current distribution factor Ki is a very good approximation provided
that the strip thickness exceeds three skin depths (t > 3δ).

αc =
R�

ZL ·W
·Kr ·Ki (11.80)

with

R� =
ρ

δ
=

√

ρ · ω ·µ
2

=
√

ρ ·π · f ·µ (11.81)

Ki = exp

(

−1.2
(

ZL

ZF0

)0.7
)

(11.82)

Kr = 1 +
2

π
arctan

(

1.4

(
∆

δ

)2
)

(11.83)

whereas

R� sheet resistance of conductor material (skin resistance)
ρ specific resistance of conductor
δ skin depth

Ki current distribution factor
Kr correction term due to surface roughness
∆ effective (rms) surface roughness of substrate

ZF0 wave impedance in vacuum

11.2 Microstrip corner

The equivalent circuit of a microstrip corner is shown in fig. 11.4. The values of the components
are as follows [30].

C [pF] = W ·
(

(10.35 · εr + 2.5) ·W
h

+ (2.6 · εr + 5.64)

)

(11.84)

L [nH] = 220 ·h ·
(

1− 1.35 · exp
(

−0.18 ·
(
W

h

)1.39
))

(11.85)

The values for a 50% mitered bend are [30].

C [pF] = W ·
(

(3.93 · εr + 0.62) ·W
h

+ (7.6 · εr + 3.80)

)

(11.86)

L [nH] = 440 ·h ·
(

1− 1.062 · exp
(

−0.177 ·
(
W

h

)0.947
))

(11.87)
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L

C

L

Figure 11.4: microstrip corner (left), mitered corner (middle) and equivalent circuit (right)

With W being width of the microstrip line and h height of the substrate. These formulas are
valid for W/h = 0.2 to 6.0 and for εr = 2.36 to 10.4 and up to 14 GHz. The precision is
approximately 0.3%.
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The Z-parameters for the given equivalent small signal circuit can be written as stated in eq.
(11.88) and are easy to convert to scattering parameters.

Z =






jωL+
1

jωC

1

jωC
1

jωC
jωL+

1

jωC




 (11.88)

11.3 Parallel coupled microstrip lines

l

h

t

W

Ws

Figure 11.5: parallel coupled microstrip lines

11.3.1 Characteristic impedance and effective dielectric constant

Parallel coupled microstrip lines are defined by the characteristic impedance and the effective
permittivity of the even and the odd mode. The y- and S-parameters are depicted in section
9.23.

Kirschning and Jansen

These quantities can very precisely be modeled by the following equations [31], [32].

Beforehand some normalised quantities (with microstrip line width W , spacing s between the
lines and substrate height h) are introduced:

u =
W

h
, g =

s

h
, fn =

f

GHz
· h

mm
=

f

MHz
·h (11.89)

The applicability of the described model is

0.1 ≤ u ≤ 10 , 0.1 ≤ g ≤ 10 , 1 ≤ εr ≤ 18 (11.90)
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The accuracies of the formulas holds for these ranges.

Static effective permittivity of even mode:

εeff,e(0) = 0.5 · (εr + 1) + 0.5 · (εr − 1) ·
(

1 +
10

v

)−ae(v) · be(εr)
(11.91)

with

v = u · 20 + g2

10 + g2
+ g · exp (−g) (11.92)

ae (v) = 1 +
1

49
· ln

(

v4 + (v/52)
2

v4 + 0.432

)

+
1

18.7
· ln

(

1 +
( v

18.1

)3
)

(11.93)

be (εr) = 0.564 ·
(
εr − 0.9

εr + 3

)0.053

(11.94)

Static effective permittivity of odd mode:

εeff,o(0) = (0.5 · (εr + 1) + ao (u, εr)− εeff (0)) · exp
(
−co · gdo

)
+ εeff (0) (11.95)

with

ao (u, εr) = 0.7287 · (εeff (0)− 0.5 · (εr + 1)) · (1− exp (−0.179 ·u)) (11.96)

bo (εr) = 0.747 · εr
0.15 + εr

(11.97)

co = bo(εr)− (bo (εr)− 0.207) · exp (−0.414 ·u) (11.98)

do = 0.593 + 0.694 · exp (−0.562 ·u) (11.99)

whence εeff (0) refers to the zero-thickness single microstrip line of width W according to [18]
(see also eq. (11.15)).

The dispersion formulae for the odd and even mode write as follows.

εeff,e,o (fn) = εr −
εr − εeff,e,o(0)

1 + Fe,o (fn)
(11.100)

The frequency dependence for the even mode is

Fe (fn) = P1 ·P2 · ((P3 ·P4 + 0.1844 ·P7) · fn)1.5763 (11.101)

with

P1 = 0.27488+

(

0.6315 +
0.525

(1 + 0.0157 ·fn)20
)

·u− 0.065683 · exp (−8.7513 ·u) (11.102)

P2 = 0.33622 · (1− exp (−0.03442 ·εr)) (11.103)

P3 = 0.0363 · exp (−4.6 ·u) ·
(

1− exp
(

− (fn/38.7)
4.97
))

(11.104)

P4 = 1 + 2.751 ·
(

1− exp
(

− (εr/15.916)
8
))

(11.105)

P5 = 0.334 · exp
(

−3.3 · (εr/15)3
)

+ 0.746 (11.106)

P6 = P5 · exp
(

− (fn/18)
0.368

)

(11.107)

P7 = 1 + 4.069 ·P6 · g0.479 · exp
(
−1.347 ·g0.595 − 0.17 · g2.5

)
(11.108)
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The frequency dependence for the odd mode is

Fo (fn) = P1 ·P2 · ((P3 ·P4 + 0.1844) · fn ·P15)
1.5763

(11.109)

with

P8 = 0.7168 ·
(

1 +
1.076

1 + 0.0576 · (εr − 1)

)

(11.110)

P9 = P8 − 0.7913 ·
(

1− exp
(

− (fn/20)
1.424

))

· arctan
(

2.481 · (εr/8)0.946
)

(11.111)

P10 = 0.242 · (εr − 1)
0.55

(11.112)

P11 = 0.6366 · (exp (−0.3401 ·fn)− 1) · arctan
(

1.263 · (u/3)1.629
)

(11.113)

P12 = P9 +
1− P9

1 + 1.183 ·u1.376
(11.114)

P13 = 1.695 · P10

0.414 + 1.605 ·P10
(11.115)

P14 = 0.8928 + 0.1072 ·
(

1− exp
(

−0.42 · (fn/20)3.215
))

(11.116)

P15 =
∣
∣1− 0.8928 · (1 + P11) · exp

(
−P13 · g1.092

)
·P12/P14

∣
∣ (11.117)

Up to fn = 25 the maximum error of these equations is 1.4%.

The static characteristic impedance for the even mode writes as follows.

ZL,e(0) =

√

εeff (0)

εeff,e(0)
· ZL(0)

1− ZL(0)

377Ω
·
√

εeff (0) ·Q4

(11.118)

with

Q1 = 0.8695 ·u0.194 (11.119)

Q2 = 1 + 0.7519 ·g + 0.189 · g2.31 (11.120)

Q3 = 0.1975 +
(

16.6 + (8.4/g)6
)−0.387

+
1

241
· ln

(

g10

1 + (g/3.4)10

)

(11.121)

Q4 =
Q1

Q2
· 2

exp (−g) ·uQ3 + (2− exp (−g)) ·u−Q3
(11.122)

with ZL(0) and εeff (0) being again quantities for a zero-thickness single microstrip line of width
W according to [18] (see also eq. (11.15) and (11.5)).

The static characteristic impedance for the odd mode writes as follows.

ZL,o(0) =

√

εeff (0)

εeff,o(0)
· ZL(0)

1− ZL(0)

377Ω
·
√

εeff (0) ·Q10

(11.123)

175



with

Q5 = 1.794 + 1.14 · ln
(

1 +
0.638

g + 0.517 · g2.43
)

(11.124)

Q6 = 0.2305 +
1

281.3
· ln

(

g10

1 + (g/5.8)
10

)

+
1

5.1
· ln

(
1 + 0.598 · g1.154

)
(11.125)

Q7 =
10 + 190 · g2
1 + 82.3 · g3 (11.126)

Q8 = exp
(

−6.5− 0.95 · ln (g)− (g/0.15)
5
)

(11.127)

Q9 = ln (Q7) · (Q8 + 1/16.5) (11.128)

Q10 =
Q2 ·Q4 −Q5 · exp

(
ln (u) ·Q6 ·u−Q9

)

Q2
= Q4 −

Q5

Q2
·uQ6 · u−Q9

(11.129)

The accuracy of the static impedances is better than 0.6%.

Dispersion of the characteristic impedance for the even mode can be modeled by the following
equations.

ZL,e(fn) = ZL,e(0) ·
(

0.9408 · (εeff (fn))Ce − 0.9603

(0.9408− de) · (εeff (0))Ce − 0.9603

)Q0

(11.130)

with

Ce = 1+ 1.275 ·
(

1− exp
(

−0.004625 ·pe · ε1.674r · (fn/18.365)2.745
))

−Q12 +Q16 −Q17 +Q18 +Q20

(11.131)

de = 5.086 · qe ·
re

0.3838 + 0.386 ·qe
· exp

(
−22.2 ·u1.92

)

1 + 1.2992 · re
· (εr − 1)6

1 + 10 · (εr − 1)6
(11.132)

pe = 4.766 · exp
(
−3.228 ·u0.641

)
(11.133)

qe = 0.016 + (0.0514 ·εr ·Q21)
4.524 (11.134)

re = (fn/28.843)
12

(11.135)
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and

Q11 = 0.893 ·
(

1− 0.3

1 + 0.7 · (εr − 1)

)

(11.136)

Q12 = 2.121 · (fn/20)
4.91

1 +Q11 · (fn/20)4.91
· exp (−2.87 · g) · g0.902 (11.137)

Q13 = 1 + 0.038 · (εr/8)5.1 (11.138)

Q14 = 1 + 1.203 · (εr/15)
4

1 + · (εr/15)4
(11.139)

Q15 =
1.887 · exp

(
−1.5 · g0.84

)
· gQ14

1 + 0.41 · (fn/15)3 ·
u2/Q13

0.125 + u1.626/Q13

(11.140)

Q16 = Q15 ·
(

1 +
9

1 + 0.403 · (εr − 1)2

)

(11.141)

Q17 = 0.394 ·
(

1− exp
(

−1.47 · (u/7)0.672
))

·
(

1− exp
(

−4.25 (fn/20)1.87
))

(11.142)

Q18 = 0.61 ·
1− exp

(

−2.13 · (u/8)1.593
)

1 + 6.544 · g4.17 (11.143)

Q19 =
0.21 · g4

(1 + 0.18 · g4.9) · (1 + 0.1 ·u2) ·
(

1 + (fn/24)
3
) (11.144)

Q20 = Q19 ·
(

0.09 +
1

1 + 0.1 · (εr − 1)
2.7

)

(11.145)

Q21 =

∣
∣
∣
∣
1− 42.54 ·g0.133 · exp (−0.812 ·g) · u2.5

1 + 0.033 ·u2.5

∣
∣
∣
∣

(11.146)

With εeff (fn) being the single microstrip effective dielectric constant according to [20] (see eq.
(11.26)) and Q0 single microstrip impedance dispersion according to [21] (there denoted as R17,
see eq. (11.49)).

Dispersion of the characteristic impedance for the odd mode can be modeled by the following
equations.

ZL,o(fn) = ZL(fn) +

ZL,o(0) ·
(
εeff,o(fn)

εeff,o(0)

)Q22

− ZL(fn) ·Q23

1 +Q24 + (0.46 · g)2.2 ·Q25

(11.147)
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with

Q22 = 0.925 · (fn/Q26)
1.536

1 + 0.3 · (fn/30)1.536
(11.148)

Q23 = 1 +
0.005 ·fn ·Q27

(

1 + 0.812 · (fn/15)1.9
)

· (1 + 0.025 ·u2)
(11.149)

Q24 =
2.506 ·Q28 ·u0.894

3.575 + u0.894
·
(
(1 + 1.3 ·u) · fn

99.25

)4.29

(11.150)

Q25 =
0.3 · f2

n

10 + f2
n

·
(

1 +
2.333 · (εr − 1)

2

5 + (εr − 1)2

)

(11.151)

Q26 = 30−
22.2 ·

(
εr − 1

13

)12

1 + 3 ·
(
εr − 1

13

)12 −Q29 (11.152)

Q27 = 0.4 · g0.84 ·
(

1 +
2.5 · (εr − 1)1.5

5 + (εr − 1)
1.5

)

(11.153)

Q28 = 0.149 · (εr − 1)
3

94.5 + 0.038 · (εr − 1)
3 (11.154)

Q29 =
15.16

1 + 0.196 · (εr − 1)
2 (11.155)

with ZL(fn) being the frequency-dependent power-current characteristic impedance formulation
of a single microstrip with width W according to [21] (see eq. (11.50)). Up to fn = 20, the
numerical error of ZL,o(fn) and ZL,e(fn) is less than 2.5%.

Hammerstad and Jensen

The equations given by E. Hammerstad and Ø. Jensen [18] represent the first generally valid
model of coupled microstrips with an acceptable accuracy. The model equations have been
validated in the range 0.1 ≤ u ≤ 10 and g ≥ 0.01, a range which should cover that used in
practice.

The homogeneous mode impedances are

ZL,e,o (u, g) =
ZL(u)

1− ZL(u) ·Φe,o (u, g) /ZF0
(11.156)

The effective dielectric constants are

εeff,e,o (u, g, εr) =
εr + 1

2
+

εr − 1

2
·Fe,o (u, g, εr) (11.157)

with

Fe (u, g, εr) =

(

1 +
10

µ (u, g)

)−a(µ) · b(εr)
(11.158)

Fo (u, g, εr) = fo (u, g, εr) ·
(

1 +
10

u

)−a(u) · b(εr)
(11.159)
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whence a(u) and b (εr) denote eqs. (11.16) and (11.17) of the single microstrip line. The charac-
teristic impedance of the single microstrip line ZL (u) also defined in [18] is given by eq. (11.5).
The modifying equations for the even mode are as follows

Φe (u, g) =
ϕ(u)

Ψ(g) ·
(
α(g) ·um(g) + (1− α(g)) ·u−m(g)

) (11.160)

ϕ(u) = 0.8645 ·u0.172 (11.161)

Ψ(g) = 1 +
g

1.45
+

g2.09

3.95
(11.162)

α(g) = 0.5 · e−g (11.163)

m(g) = 0.2175 +
(

4.113 + (20.36/g)6
)−0.251

+
1

323
· ln

(

g10

1 + (g/13.8)10

)

(11.164)

The modifying equations for the odd mode are as follows

Φo (u, g) = Φe (u, g)−
θ(g)

Ψ(g)
· exp

(

β(g) ·u−n(g) · lnu
)

(11.165)

θ(g) = 1.729 + 1.175 · ln
(

1 +
0.627

g + 0.327 · g2.17
)

(11.166)

β(g) = 0.2306 +
1

301.8
· ln

(

g10

1 + (g/3.73)10

)

+
1

5.3
· ln

(
1 + 0.646 ·g1.175

)
(11.167)

n(g) =

(
1

17.7
+ exp

(

−6.424− 0.76 · ln g − (g/0.23)
5
))

· ln
(

10 + 68.3 · g2
1 + 32.5 · g3.093

)

(11.168)

Furthermore

µ (u, g) = g · e−g + u · 20 + g2

10 + g2
(11.169)

fo (u, g, εr) = fo1 (g, εr) · exp (p(g) · lnu+ q(g) · sin (π · log u)) (11.170)

p(g) =
exp

(
−0.745 ·g0.295

)

cosh (g0.68)
(11.171)

q(g) = exp (−1.366− g) (11.172)

fo1 (g, εr) = 1− exp



−0.179 · g0.15 − 0.328 · gr(g,εr)

ln
(

e + (g/7)
2.8
)



 (11.173)

r (g, εr) = 1 + 0.15 ·



1−
exp

(

1− (εr − 1)
2
/8.2

)

1 + g−6



 (11.174)

The quasi-static characteristic impedance ZL(u) of a zero-thickness single microstrip line denoted
in eq. (11.156) can either be calculated using the below equations with εreff

being the quasi-static
effective dielectric constant defined by eq. (11.15) or using eqs. (11.5) and (11.15).

ZL1(u) =
ZF0

u+ 1.98 ·u0.172
(11.175)

ZL(u) =
ZL1(u)√
εreff

(11.176)

179



The errors in the even and odd mode impedances ZL,e and ZL,e were found to be less than 0.8%
and less than 0.3% for the wavelengths.

The model does not include the effect of non-zero strip thickness or asymmetry. Dispersion is
also not included. W. J. Getsinger [33] has proposed modifications to his single strip dispersion
model, but unfortunately it is easily shown that the results are asymptotically wrong for extreme
values of gap width.

In fact he correctly assumes that in the even mode the two strips are at the same potential,
and the total current is twice that on a single strip, and dispersion for even-mode propagation
is computed by substituting ZL,e/2 for ZL in eqs. (11.60) and (11.61). In the odd mode the two
strips are at opposite potentials, and the voltage between strips is twice that of a single strip to
ground. Thus the total mode impedance is twice that of a single strip, and the dispersion for
odd-mode propagation is computed substituting 2ZL,o for ZL in eqs. (11.60) and (11.61).

εr,e,o (f) = εr −
εr − εreff,e,o

1 +G ·
(

f

fp

)2 (11.177)

with

fp =







ZL,e

4µ0h
even mode

ZL,o

µ0h
odd mode

(11.178)

G =







0.6 + ZL,e · 0.0045 even mode

0.6 + ZL,o · 0.018 odd mode

(11.179)

11.3.2 Strip thickness correction

According to R.H. Jansen [34] corrected strip width values have been found in the range of
technologically meaningful geometries to be

Wt,e = W +∆W ·
(

1− 0.5 · exp
(

−0.69 · ∆W

∆t

))

(11.180)

Wt,o = Wt,e +∆t (11.181)

with

∆t =
2 · t ·h
s · εr

for s≫ 2t (11.182)

The author refers to the modifications of the strip width of a single microstrip line ∆W given
by Hammerstad and Bekkadal. See also eq. (11.21) on page 165.

∆W =







t

π
·
(

1 + ln

(
2h

t

))

for W >
h

2π
> 2t

t

π
·
(

1 + ln

(
4πW

t

))

for
h

2π
≥W > 2t

(11.183)

For large spacings s the single line formulae (11.183) applies.
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11.3.3 Transmission losses

The loss equations given by E. Hammerstad and Ø. Jensen [18] for the single microstrip line
are also valid for coupled microstrips, provided that the dielectric filling factor, homogeneous
impedance, and current distribution factor of the actual mode are used. The following approx-
imation gives good results for odd and even current distribution factors (modification of eq.
(11.82)).

Ki,e = Ki,o = exp

(

−1.2 ·
(
ZL,e + ZL,o

2 ·ZF0

)0.7
)

(11.184)

11.4 Microstrip open

A microstrip open end can be modeled by a longer effective microstrip line length ∆l as described
by M. Kirschning, R.H. Jansen and N.H.L. Koster [35].

∆l

h
=

Q1 ·Q3 ·Q5

Q4
(11.185)

with

Q1 = 0.434907 ·
ε0.81r,eff + 0.26

ε0.81r,eff − 0.189
· (W/h)

0.8544
+ 0.236

(W/h)0.8544 + 0.87
(11.186)

Q2 = 1 +
(W/h)

0.371

2.358 · εr + 1
(11.187)

Q3 = 1 +
0.5274

ε0.9236r,eff

· arctan
(

0.084 · (W/h)
1.9413
Q2

)

(11.188)

Q4 = 1 + 0.0377 · (6− 5 · exp (0.036 · (1− εr))) · arctan
(

0.067 · (W/h)
1.456

)

(11.189)

Q5 = 1− 0.218 · exp (−7.5 ·W/h) (11.190)

The numerical error is less than 2.5% for 0.01 ≤W/h ≤ 100 and 1 ≤ εr ≤ 50.

Another microstrip open end model was published by E. Hammerstad [36]:

∆l

h
= 0.102 ·W/h+ 0.106

W/h+ 0.264
·
(

1.166 +
εr + 1

εr
· (0.9 + ln (W/h+ 2.475))

)

(11.191)

Here the numerical error is less than 1.7% for W/h < 20.

In order to simplify calculations, the equivalent additional line length ∆l can be transformed
into an equivalent open end capacitance Cend:

Cend = C′ ·∆l =

√
εr,eff

c0 ·ZL
∆l (11.192)

With C′ being the capacitance per length and c0 = 299 792 458 m/s being the vacuum light
velocity.
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11.5 Microstrip gap

A symmetrical microstrip gap can be modeled by two open ends with a capacitive series coupling
between the two ends. The physical layout is shown in fig. 11.6.

S

1W
2W

Figure 11.6: symmetrical microstrip gap layout

The equivalent π-network of a microstrip gap is shown in figure 11.7. The values of the compo-
nents are according to [37] and [30].

CS [pF] = 500 ·h · exp
(

−1.86 · s
h

)

·Q1 ·
(

1 + 4.19

(

1− exp

(

−0.785 ·
√

h

W1
·W2

W1

)))

(11.193)

CP1 = C1 ·
Q2 +Q3

Q2 + 1
(11.194)

CP2 = C2 ·
Q2 +Q4

Q2 + 1
(11.195)

with

Q1 = 0.04598 ·
(

0.03 +

(
W1

h

)Q5
)

· (0.272 + 0.07 · εr) (11.196)

Q2 = 0.107 ·
(
W1

h
+ 9

)

·
( s

h

)3.23

+ 2.09 ·
( s

h

)1.05

· 1.5 + 0.3 ·W1/h

1 + 0.6 ·W1/h
(11.197)

Q3 = exp

(

−0.5978 ·
(
W2

W1

)1.35
)

− 0.55 (11.198)

Q4 = exp

(

−0.5978 ·
(
W1

W2

)1.35
)

− 0.55 (11.199)

Q5 =
1.23

1 + 0.12 · (W2/W1 − 1)
0.9 (11.200)

with C1 and C2 being the open end capacitances of a microstrip line (see eq. (11.192)). The

182



numerical error of the capacitive admittances is less than 0.1mS for

0.1 ≤W1/h ≤ 3

0.1 ≤W2/h ≤ 3

1 ≤W2/W1 ≤ 3

6 ≤ εr ≤ 13

0.2 ≤ s/h ≤ ∞
0.2GHz ≤ f ≤ 18GHz

s

1W 2W CP1 P2

C

C

S

Figure 11.7: microstrip gap and its equivalent circuit

The Y-parameters for the given equivalent small signal circuit can be written as stated in eq.
(11.201) and are easy to convert to scattering parameters.

Y =

[
jω · (CP1 + CS) −jωCS

−jωCS jω · (CP2 + CS)

]

(11.201)

11.6 Microstrip impedance step

The equivalent circuit of a microstrip impedance step is the same as for the microstrip corner
(figure 11.4). The values are according to [38]:

CS [pF] =
√

W1 ·W2 ·
(

(10.1 · log εr + 2.33) ·W1

W2
− 12.6 · log εr − 3.17

)

(11.202)

for εr ≤ 10 and 1.5 ≤W1/W2 ≤ 3.5 the error is < 10%.

L1 =
LW1

LW1 + LW2
·LS (11.203)

L2 =
LW2

LW1 + LW2
·LS (11.204)

with

LW1,2 =
ZL,1,2 · √εr,eff,1,2

c0
(11.205)

LS

h
[nH/m] = 40.5 ·

(
W1

W2
− 1

)

− 75 · log W1

W2
+ 0.2 ·

(
W1

W2
− 1

)2

(11.206)

With c0 = 299 792 458 m/s being the vacuum light velocity. The error is less than 5% for
W1/W2 ≤ 5 and W2/h = 1.
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11.7 Microstrip tee junction

A model of a microstrip tee junction is published in [36]. Figure 11.8 shows a unsymmetrical
microstrip tee with the main arms consisting of port a and b and with the side arm consisting of
port 2. The following model describes the gray area. The equivalent circuit is depicted in figure
11.9. It consists of a shunt reactance BT , one transformer in each main arm (ratios Ta and Tb)
and a microstrip line in each arm (width Wa, Wb and W2).

Port 2

Port a Port bWa bW

W2

Figure 11.8: unsymmetrical microstrip tee (see text)

T

a

ba

b

2

T

Port 2

1 Port bPort a jB1

L L

T

L

Figure 11.9: equivalent circuit of unsymmetrical microstrip tee

First, let us define some quantities. Each of them is used in the equations below with an index
of the arm they belong to (a, b or 2).

equivalent parallel plate line width: D =
ZF0√
εr,eff

· h

ZL
(11.207)

where ZF0 is vacuum field impedance, h height of substrate, εr,eff effective, relative dielectric

184



constant, ZL microstrip line impedance.

first higher order mode cut-off frequency: fp = 4 · 105 · ZL

h
(11.208)

effective wave length of the microstrip quasi-TEM mode: λ =
c0√

εr,eff · f
(11.209)

The main arm displacements of the reference planes from the center lines are (index x stand for
a or b):

dx = 0.055 ·D2 ·
ZL,x

ZL,2
·
(

1− 2 · ZL,x

ZL,2
·
(

f

fp,x

)2
)

(11.210)

The length of the line in the main arms is:

Lx = 0.5 ·W2 − dx (11.211)

where f is frequency.

The side arm displacement of the reference planes from the center lines is:

d2 =
√

Da ·Db · (0.5−R · (0.05 + 0.7 · exp (−1.6 ·R) + 0.25 ·R ·Q− 0.17 · lnR)) (11.212)

The length of the line in the side arm is:

L2 = 0.5 ·max (Wa,Wb)− d2 (11.213)

where max (x, y) is the larger of the both quantities, R and Q are:

R =

√
ZL,a ·ZL,b

ZL,2
Q =

f2

fp,a · fp,b
(11.214)

Turn ratio of transformers in the side arms:

T 2
x = 1− π ·

(
f

fp,x

)2

·
(

1

12
·
(
ZL,x

ZL,2

)2

+

(

0.5− d2
Dx

)2
)

(11.215)

Shunt susceptance:

BT = 5.5 ·
√

Da ·Db

λa ·λb
· εr + 2

εr
· 1

ZL,2 ·Ta ·Tb
·
√
da · db
D2

·
(

1 + 0.9 · lnR+ 4.5 ·R ·Q− 4.4 · exp (−1.3 ·R)− 20 ·
(
ZL,2

ZF0

)2
) (11.216)

For better implementation of the microstrip tee (figure 11.9) the device parameter of the internal
equivalent circuit (two transformers and the shunt susceptance) are given below. The port
numbering for them is port a = 1, port b = 2 and port 2 = 3.

(Y ) = infinity (11.217)
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(Z) =
1

j ·BT
·










1

n2
a

1

na ·nb

1

na
1

na ·nb

1

n2
b

1

nb
1

na

1

nb
1










(11.218)

S11 =
1− n2

a · (j ·BT ·Z0 +
1
n2
b

+ 1)

1 + n2
a · (j ·BT ·Z0 +

1
n2
b

+ 1)
(11.219)

S22 =
1− n2

b · (j ·BT ·Z0 +
1
n2
a
+ 1)

1 + n2
b · (j ·BT ·Z0 +

1
n2
a
+ 1)

(11.220)

S33 =
1−

(
1
n2
a
+ 1

n2
b

+ j ·BT ·Z0

)

1 +
(

1
n2
a
+ 1

n2
b

+ j ·BT ·Z0

) (11.221)

S13 = S31 =
2 ·na

n2
a ·
(

1
n2
b

+ j ·BT ·Z0 + 1
)

+ 1
(11.222)

S23 = S32 =
2 ·nb

n2
b ·
(

1
n2
a
+ j ·BT ·Z0 + 1

)

+ 1
(11.223)

S12 = S21 =
2

na ·nb · (j ·BT ·Z0 + 1) + na

nb
+ nb

na

(11.224)

The MNA matrix representation can be derived from the Z parameters in the following way.










. . . 1 0 0

. . . 0 1 0

. . . 0 0 1
−1 0 0 Z11 Z12 Z13

0 −1 0 Z21 Z22 Z23

0 0 −1 Z31 Z32 Z33











·











V1

V2

V3

I1,in
I2,in
I3,in











=











I1
I2
I3
0
0
0











(11.225)

Please note that the main arm displacements in eq. (11.210) yield two small microstrip lines at
each main arm and the side arm displacement of eq. (11.212) results in a small microstrip strip
line as well, but with negative length, i.e. kind of phaseshifter here.

The transformer ratios defined in eq. (11.215) are going to be negative with increasing frequency
which produces complex values in the Z-parameter matrix as well as in the S-parameter matrix.
That is why the ratios are delimited to a minimum value.

11.8 Microstrip cross

The most useful model of a microstrip cross have been published in [39, 40]. Fig. 11.10 shows
the equivalent circuit (right-hand side) and the scheme with dimensions (left-hand side). The
hatched area in the scheme marks the area modeled by the equivalent circuit. As can be seen
the model require the microstrip width of line 1 and 3, as well as the one of line 2 and 4 to equal
each other. Furthermore the permittivity of the substrat must be ǫr = 9.9. The component
values are calculated as follows:
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X = log10

(
W1

h

)

·
(

86.6 ·W2

h
− 30.9 ·

√

W2

h
+ 367

)

+

(
W2

h

)3

+ 74 ·W2

h
+ 130 (11.226)

C1 = C2 = C3 = C4

= 10−12 ·W1 ·
(

0.25 ·X ·
(

h

W1

)1/3

− 60 +
h

2 ·W2
− 0.375 ·W1

h
·
(

1− W2

h

))

(11.227)

Y = 165.6 ·W2

h
+ 31.2

√

W2

h
− 11.8 ·

(
W2

h

)2

(11.228)

L1 = 10−9 ·h ·
(

Y · W1

h
− 32 ·W2

h
+ 3

)

·
(

h

W1

)1.5

(11.229)

L3 = 10−9 ·h ·
(

5 ·W2

h
· cos

(
π

2
·
(

1.5− W1

h

))

−
(

1 +
7 ·h
W1

)

· h

W2
− 337.5

)

(11.230)

The equation of L2 is obtained from the one of L1 by exchanging the indices (W1 and W2). Note
that L3 is negative, so the model is unphysical without external microstrip lines. The above-
mentioned equations are accurate to within 5% for 0.3 ≤W1/h ≤ 3 and 0.1 ≤ W2/h ≤ 3 (value
of C1 . . . C4) or for 0.5 ≤W1,2/h ≤ 2 (value of L1 . . . L3), respectively.

L

2 4

5

W1

W2

3

4

1

2

1 3

2 4

L L

LL

3
CC

C C

3

42

1

1

Figure 11.10: single-symmetrical microstrip cross and its model

Some improvement should be added to the original model:

1. Comparisons with real life show that the value of L3 is too large. Multiplying it by 0.8
leads to much better results.

2. The model can be expanded for substrates with ǫr 6= 9.9 by modifying the values of the
capacitances:

Cx = Cx(ǫr = 9.9) · Z0(ǫr = 9.9,W = Wx)

Z0(ǫr = ǫr,sub,W = Wx)
·
√

ǫeff (ǫr = ǫr,sub,W = Wx)

ǫeff (ǫr = 9.9,W = Wx)
(11.231)

The equations of Z0 and ǫeff are the ones from the microstrip lines.
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A useful model for an unsymmetrical cross junction has never been published. Nonetheless, as
long as the lines that lie opposite are not to different in width, the model described here can be
used as a first order approximation. This is perfomred by replacing W1 and W2 by the arithmetic
mean of the line widths that lie opposite. This is done:

• In equation (11.226) and (11.227) for W2 only, whereas W1 is replaced by the width of the
line.

• In equation (11.228) and (11.229) for W2 only, whereas W1 is replaced by the width of the
line.

• In equation (11.230) for W1 and W2.

Another closed-form expression describing the non-ideal behaviour of a microstrip cross junction
was published by [41]. Additionally there have been published papers [42, 43, 44] giving analytic
(but not closed-form) expressions or just simple equivalent circuits with only a few expressions
for certain topologies and dielectric constants which are actually of no pratical use.

11.9 Microstrip via hole

t

D

h

Figure 11.11: microstrip via hole to ground

According to Marc E. Goldfarb and Robert A. Pucel [45] a via hole ground in microstrip is a
series of a resistance and an inductance. The given model for a cylindrical via hole has been
verified numerically and experimentally for a range of h < 0.03 ·λ0.

L =
µ0

2π
·
(

h · ln
(

h+
√
r2 + h2

r

)

+
3

2
·
(

r −
√

r2 + h2
)
)

(11.232)

whence h is the via length (substrate height) and r = D/2 the via’s radius.

R = R (f = 0) ·
√

1 +
f

fδ
(11.233)

with
fδ =

ρ

π ·µ0 · t2
(11.234)
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The relationship for the via resistance can be used as a close approximation and is valid inde-
pendent of the ratio of the metalization thickness t to the skin depth. In the formula ρ denotes
the specific resistance of the conductor material.

11.10 Bondwire

Wire inductors, so called bond wire connections, are used to connect active and passive circuit
components as well as micro devices to the real world.

L

d

h

l

21 R

Figure 11.12: bond wire and its equivalent circuit

11.10.1 Freespace model

The freespace inductance L of a wire of diameter d and length l is given [46, 47] by

L =
µ0

2π
· l



ln







2l

d
+

√

1 +

(
2l

d

)2





+

d

2l
−

√

1 +

(
d

2l

)2

+ C



 (11.235)

where the frequency-dependent correction factor C is a function of bond wire diameter and its
material skin depth δ is expressed as

C =
µr

4
· tanh

(
4δ

d

)

(11.236)

δ =
1√

π ·σ · f ·µ0 ·µr
(11.237)

where σ is the conductivity of the wire material. When δ/d is small, C = δ/d. The wire resistance
R is given by

R =
ρ · l
π · r2 (11.238)

with ρ = 1/σ and r = d/2.
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11.10.2 Mirror model

The effect of the ground plane on the inductance valueof a wire has also been considered. If the
wire is at a distance h above the ground plane, it sees its image at 2h from it. The wire and
its image result in a mutual inductance. Since the image wire carries a current opposite to the
current flow in the bond wire, the effective inductance of the bond wire becomes

L =
µ0

2π
· l
[

ln

(
4h

d

)

+ ln

(

l +
√

l2 + d2/4

l +
√
l2 + 4h2

)

+

√

1 +
4h2

l2
−
√

1 +
d2

4l2
− 2

h

l
+

d

2l

]

(11.239)

Mirror is a strange model that is frequency independent. Whereas computations are valid,
hypothesis are arguable. Indeed, they did the assumption that the ground plane is perfect that
is really a zero order model in the high frequency domain.
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Chapter 12

Coplanar components

12.1 Coplanar waveguides (CPW)

12.1.1 Definition

A coplanar line is a structure in which all the conductors supporting wave propagation are
located on the same plane, i.e. generally the top of a dielectric substrate. There exist two main
types of coplanar lines: the first, called coplanar waveguide (CPW), that we will study here, is
composed of a median metallic strip separated by two narrow slits from a infinite ground plane,
as may be seen on the figure below.

Figure 12.1: coplanar waveguide line

The characteristic dimensions of a CPW are the central strip width W and the width of the slots
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s. The structure is obviously symmetrical along a vertical plane running in the middle of the
central strip.

ss W

The other coplanar line, called a coplanar slot (CPS) is the complementary of that topology,
consisting of two strips running side by side.

12.1.2 Quasi-static analysis by conformal mappings

A CPW can be quasi-statically analysed by the use of conformal mappings. Briefly speaking, it
consists in transforming the geometry of the PCB into another conformation, whose properties
make the computations straightforward. The interested reader can consult the pp. 886 - 910
of [48] which has a correct coverage of both the theoretical and applied methods. The French
reader interested in the mathematical arcanes involved is referred to the second chapter of [49]
(which may be out of print nowadays), for an extensive review of all the theoretical framework.
The following analysis is mainly borrowed from [39], pp. 375 et seq. with additions from [48].

The CPW of negligible thickness located on top of an infinitely deep substrate, as shown on
the left of the figure below, can be mapped into a parallel plate capacitor filled with dielectric
ABCD using the conformal function:

w =

∫ z

z0

dz
√

(z −W/2)(z −W/2− s)
. (12.1)
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B

D C

W/2 s

A

To further simplify the analysis, the original dielectric boundary is assumed to constitute a
magnetic wall, so that BC and AD become magnetic walls too and there is no resulting fringing
field in the resulting capacitor. With that assumption, the capacitance per unit length is merely
the sum of the top (air filled) and bottom (dielectric filled) partial capacitances. The latter is
given by:

Cd = 2 · ε0 · εr ·
K(k1)

K ′(k1)
(12.2)

while the former is:

Ca = 2 · ε0 ·
K(k1)

K ′(k1)
(12.3)

In both formulae K(k) and K ′(k) represent the complete elliptic integral of the first kind and its
complement, and k1 = W

W+2s . While the separate evaluation of K and K ′ is more or less tricky,
the K/K ′ ratio lets itself compute efficiently through the following formulae:

K(k)

K ′(k)
=

π

ln
(

2 1+
√
k′

1−
√
k′

) for 0 ≤ k ≤ 1√
2

(12.4)

K(k)

K ′(k)
=

ln
(

2 1+
√
k

1−
√
k

)

π
for

1√
2
≤ k ≤ 1 (12.5)

with k′ being the complementary modulus: k′ =
√
1− k2. While [48] states that the accuracy

of the above formulae is close to 10−5, [39] claims it to be 3 · 10−6. It can be considered as exact
for any practical purposes.

The total line capacitance is thus the sum of Cd and Ca. The effective permittivity is therefore:

εre =
εr + 1

2
(12.6)

and the impedance:

Z =
30π√
εre
· K

′(k1)

K(k1)
(12.7)
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Figure 12.2: characteristic impedance as approximated by eq. (12.7) for εr = 1.0 (air), 3.78
(quartz) and 9.5 (alumina)

In practical cases, the substrate has a finite thickness h. To carry out the analysis of this
conformation, a preliminary conformal mapping transforms the finite thickness dielectric into an
infinite thickness one. Only the effective permittivity is altered; it becomes:

εre = 1 +
εr − 1

2
· K(k2)

K ′(k2)
· K

′(k1)

K(k1)
(12.8)

where k1 is given above and

k2 =

sinh

(
πW

4h

)

sinh

(
π · (W + 2s)

4h

) . (12.9)

Finally, let us consider a CPW over a finite thickness dielectric backed by an infinite ground
plane. In this case, the quasi-TEM wave is an hybrid between microstrip and true CPW mode.
The equations then become:

εre = 1 + q · (εr − 1) (12.10)

where q, called filling factor is given by:

q =

K(k3)

K ′(k3)

K(k1)

K ′(k1)
+

K(k3)

K ′(k3)

(12.11)
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and

k3 =

tanh

(
πW

4h

)

tanh

(
π · (W + 2s)

4h

) (12.12)

The impedance of this line amounts to:

Z =
60π√
εre
· 1

K(k1)

K ′(k1)
+

K(k3)

K ′(k3)

(12.13)

12.1.3 Effects of metalization thickness

In most practical cases, the strips are very thin, yet their thickness cannot be entirely neglected.
A first order correction to take into account the non-zero thickness of the conductor is given by
[39]:

se = s−∆ (12.14)

and
We = W +∆ (12.15)

where

∆ =
1.25t

π
·
(

1 + ln

(
4πW

t

))

(12.16)

In the computation of the impedance, both the k1 and the effective dielectric constant are affected,
wherefore k1 must be substituted by an “effective” modulus ke, with:

ke =
We

We + 2se
≈ k1 +

(
1− k21

)
· ∆
2s

(12.17)

and

εtre = εre −
0.7 · (εre − 1) · t

s
K(k1)

K ′(k1)
+ 0.7 · t

s

(12.18)

12.1.4 Effects of dispersion

The effects of dispersion in CPW are similar to those encountered in the microstrip lines, though
the net effect on impedance is somewhat different. [39] gives a closed form expression to compute
εre(f) from its quasi-static value:

√

εre(f) =
√

εre(0) +

√
εr −

√

εre(0)

1 +G ·
(

f

fTE

)−1.8 (12.19)

where:

G = e
u · ln

(

W
s

)

+v
(12.20)

u = 0.54− 0.64p+ 0.015p2 (12.21)

v = 0.43− 0.86p+ 0.54p2 (12.22)

p = ln
(
W
h

)
(12.23)
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and fTE is the cut-off frequency of the TE0 mode, defined by:

fTE =
c

4h ·√εr − 1
. (12.24)

This dispersion expression was first reported by [50] and has been reused and extended in [51].
The accuracy of this expression is claimed to be better than 5% for 0.1 ≤W/h ≤ 5, 0.1 ≤W/s ≤
5, 1.5 ≤ εr ≤ 50 and 0 ≤ f/fTE ≤ 10.

12.1.5 Evaluation of losses

As for microstrip lines, the losses in CPW results of at least two factors: a dielectric loss αd and
conductor losses αCW

c . The dielectric loss αd is identical to the microstrip case, see eq. (11.79)
on page 170.

The αCW
c part of the losses is more complex to evaluate. As a general rule, it might be written:

αCW
c = 0.023 · Rs

Z0cp

[
∂Za

0cp

∂s
−

∂Za
0cp

∂W
−

∂Za
0cp

∂t

]

in dB/unit length (12.25)

where Za
0cp stands for the impedance of the coplanar waveguide with air as dielectric and Rs is

the surface resistivity of the conductors (see eq. (11.81) on page 171).

Through a direct approach evaluating the losses by conformal mapping of the current density,
one obtains [39], first reported in [52] and finally applied to coplanar lines by [53]:

αCW
c =

Rs ·
√
εre

480π ·K(k1) ·K ′(k1) · (1− k21)
·

(
1

a

[

π + ln
8πa · (1− k1)

t · (1 + k1)

]

+
1

b

[

π + ln
8πb · (1− k1)

t · (1 + k1)

]) (12.26)

In the formula above, a = W/2, b = s+W/2 and it is assumed that t > 3δ, t≪W and t≪ s.

12.1.6 S- and Y-parameters of the single coplanar line

The computation of the coplanar waveguide lines S- and Y-parameters is equal to all transmission
lines (see section section 9.21 on page 111).

12.2 Coplanar waveguide open

The behaviour of an open circuit as shown in fig. 12.3 is very similar to that in a microstrip line;
that is, the open circuit is capacitive in nature.
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Figure 12.3: coplanar waveguide open-circuit

A very simple approximation for the equivalent length extension ∆l associated with the fringing
fields has been given by K.Beilenhoff [54].

∆lopen =
Copen

C′ ≈ W + 2s

4
(12.27)

For the open end, the value of ∆l is not influenced significantly by the metalization thickness and
the gap width g when g > W + 2s. Also, the effect of frequency and aspect ration W/(W + 2s)
is relatively weak. The above approximation is valid for 0.2 ≤W/(W + 2s) ≤ 0.8.

The open end capacitance Copen can be written in terms of the capacitance per unit length and
the wave resistance.

Copen = C′ ·∆lopen =

√
εr,eff

c0 ·ZL
·∆lopen (12.28)

12.3 Coplanar waveguide short

There is a similar simple approximation for a coplanar waveguide short-circuit, also given in [54].
The short circuit is inductive in nature.
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Figure 12.4: coplanar waveguide short-circuit

The equivalent length extension ∆l associated with the fringing fields is

∆lshort =
Lshort

L′ ≈ W + 2s

8
(12.29)

Equation (12.29) is valid when the metalization thickness t does not become too large (t < s/3).

The short end inductance Lshort can be written in terms of the inductance per unit length and
the wave resistance.

Lshort = L′ ·∆lshort =

√
εr,eff ·ZL

c0
·∆lshort (12.30)

According to W.J.Getsinger [55] the CPW short-circuit inductance per unit length can also be
modeled by

Lshort =
2

π
· ε0 · εr,eff · (W + s) ·Z2

L ·
(

1− sech

(
π ·ZF0

2 ·ZL ·√εr,eff

))

(12.31)

based on his duality [56] theory.

12.4 Coplanar waveguide gap

According to W.J.Getsinger [56] a coplanar series gap (see fig. 12.5) is supposed to be the dual
problem of the inductance of a connecting strip between twin strip lines.
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Figure 12.5: coplanar waveguide series gap

The inductance of such a thin strip with a width g and the length W is given to a good approx-
imation by

L =
µ0 ·W
2π

·
(

p−
√

1 + p2 + ln

(

1 +
√

1 + p2

p

))

(12.32)

where p = g/4W and g,W ≪ λ. Substituting this inductance by its equivalent capacitance of
the gap in CPW yields

C = L · 4 · εr,eff
Z2
F0

=
2 · ε0 · εr,eff ·W

π
·
(

p−
√

1 + p2 + ln

(

1 +
√

1 + p2

p

)) (12.33)

12.5 Coplanar waveguide step

The coplanar step discontinuity shown in figure 12.6 has been analysed by C. Sinclair [57].
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C

s

2

1

s

Figure 12.6: coplanar waveguide impedance step and equivalent circuit
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The symmetric step change in width of the centre conductor is considered to have a similar
equivalent circuit as a step of a parallel plate guide - this is a reasonable approximation to the
CPW step as in the CPW the majority of the field is between the inner and outer conductors
with some fringing.

The actual CPW capacitance can be expressed as

C = x · ε0
π
·
(
α2 + 1

α
· ln

(
1 + α

1− α

)

− 2 · ln
(

4 ·α
1− α2

))

(12.34)

where

α =
s1
s2

, α < 1 and x =
x1 + x2

2
(12.35)

The capacitance per unit length equivalence yields

x1 =
C′ (W1, s1) · s1

ε0
and x2 =

C′ (W2, s2) · s2
ε0

(12.36)

with

C′ =

√
εr,eff

c0 ·ZL
(12.37)

The average equivalent width x of the parallel plate guide can be adjusted with an expression
that uses weighted average of the gaps s1 and s2. The final expression has not been discussed in
[57]. The given equations are validated over the following ranges: 2 < εr < 14, h > W + 2s and
f < 40GHz.

The Z-parameters of the equivalent circuit depicted in fig. 12.6 are

Z11 = Z21 = Z12 = Z22 =
1

jωC
(12.38)

The MNA matrix representation for the AC analysis can be derived from the Z-parameters in
the following way.







. . 1 0

. . 0 1
−1 0 Z11 Z12

0 −1 Z21 Z22






·







V1

V2

Iin
Iout






=







I1
I2
0
0







(12.39)

The above expanded representation using the Z-parameters is necessary because the Y-parameters
are infinite. During DC analysis the equivalent circuit is a voltage source between both terminals
with zero voltage.

The S-parameters of the topology are

S11 = S22 = − Z0

2Z + Z0
(12.40)

S12 = S21 = 1 + S11 =
2Z

2Z + Z0
(12.41)
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Chapter 13

Other types of transmission lines

13.1 Coaxial cable

D d

l

εr

Figure 13.1: coaxial line

13.1.1 Characteristic impedance

The characteristic impedance of a coaxial line can be calculated as follows:

ZL =
ZF0

2π · √εr
· ln

(
D

d

)

(13.1)

13.1.2 Losses

Overall losses in a coaxial cable consist of dielectric and conductor losses. The dielectric losses
compute as follows:

αd =
π

c0
· f · √εr · tan δ (13.2)
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The conductor (i.e. ohmic) losses are specified by

αc =
√
εr ·







1

D
+

1

d

ln

(
D

d

)






· RS

ZF0
(13.3)

with RS denoting the sheet resistance of the conductor material, i.e. the skin resistance

RS =
√

π · f ·µr ·µo · ρ (13.4)

13.1.3 Cutoff frequencies

In normal operation a signal wave passes through the coaxial line as a TEM wave with no
electrical or magnetic field component in the direction of propagation. Beyond a certain cutoff
frequency additional (unwanted) higher order modes are excited.

fTE ≈
2 · c0

π · (D + d) · √εr
→ TE(1,1) mode (13.5)

fTM ≈
c0

(D − d) · √εr
→ TM(n,1) mode (13.6)

13.2 Twisted pair

The twisted pair configurations as shown in fig. 13.2 provides good low frequency shielding.
Undesired signals tend to be coupled equally into eachline of the pair. A differential receiver will
therefore completely cancel the interference.

D

d
εr

Figure 13.2: twisted pair configuration
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13.2.1 Quasi-static model

According to P. Lefferson [58] the characteristic impedance and effective dielectric constant of a
twisted pair can be calculated as follows.

ZL =
ZF0

π · √εr,eff
· acosh

(
D

d

)

(13.7)

εr,eff = εr,1 + q · (εr − εr,1) (13.8)

with
q = 0.25 + 0.0004 ·θ2 and θ = atan (T ·π ·D) (13.9)

whereas θ is the pitch angle of the twist; the angle between the twisted pair’s center line and
the twist. It was found to be optimal for θ to be between 20◦and 45◦. T denotes the twists
per length. Eq. (13.9) is valid for film insulations, for the softer PTFE material it should be
modified as follows.

q = 0.25 + 0.001 · θ2 (13.10)

Assuming air as dielectric around the wires yields 1’s replacing εr,1 in eq. (13.8). The wire’s
total length before twisting in terms of the number of turns N is

l = N ·π ·D ·
√

1 +
1

tan2 θ
(13.11)

13.2.2 Transmission losses

The propagation constant γ of a general transmission line is given by

γ =
√

(R′ + jωL′) · (G′ + jωC′) (13.12)

Using some transformations of the formula gives an expression with and without the angular
frequency.

γ =
√

(R′ + jωL′) · (G′ + jωC′)

=
√
L′C′ ·

√

R′G′

L′C′ + jω

(
R′

L′ +
G′

C′

)

− ω2

=
√
L′C′ ·

√
(
1

2
·
(
R′

L′ +
G′

C′

)

+ jω

)2

− 1

4
·
(
R′

L′ +
G′

C′

)2

+
R′G′

L′C′

(13.13)

For high frequencies eq.(13.13) can be approximated to

γ ≈
√
L′C′ ·

(
1

2
·
(
R′

L′ +
G′

C′

)

+ jω

)

(13.14)

Thus the real part of the propagation constant γ yields

α = Re {γ} =
√
L′C′ · 1

2
·
(
R′

L′ +
G′

C′

)

(13.15)

With

ZL =

√

L′

C′ (13.16)
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the expression in eq.(13.15) can be written as

α = αc + αd =
1

2
·
(
R′

ZL
+G′ZL

)

(13.17)

whereas αc denotes the conductor losses and αd the dielectric losses.

Conductor losses

The sheet resistance R’ of a transmission line conductor is given by

R′ =
ρ

Aeff
(13.18)

whereas ρ is the specific resistance of the conductor material and Aeff the effective area of the
conductor perpendicular to the propagation direction. At higher frequencies the area of the
conductor is reduced by the skin effect. The skin depth is given by

δs =

√
ρ

π · f ·µ (13.19)

Thus the effective area of a single round wire yields

Aeff = π ·
(
r2 − (r − δs)

2
)

(13.20)

whereas r denotes the radius of the wire. This means the overall conductor attenuation constant
αc for a single wire gives

αc =
R′

2 ·ZL
=

ρ

2 ·ZL ·π · (r2 − (r − δs)2)
(13.21)

Dielectric losses

The dielectric losses are determined by the dielectric loss tangent.

tan δd =
G′

ωC′ → G′ = ωC′ · tan δd (13.22)

With

C′ =
1

ω
· Im

{
γ

ZL

}

(13.23)

the equation (13.22) can be rewritten to

G′ =
β

ZL
· tan δd =

ω

vph ·ZL
· tan δd

=
2π · f · √εr,eff

c0 ·ZL
· tan δd =

2π · √εr,eff
λ0 ·ZL

· tan δd
(13.24)

whereas vph denotes the phase velocity, c0 the speed of light, εr,eff the effective dielectric constant
and λ0 the freespace wavelength. With these expressions at hand it is possible to find a formula
for the dielectric losses of the transmission line.

αd =
1

2
·G′ZL =

π · √εr,eff
λ0

· tan δd (13.25)
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Overall losses of the twisted pair configuration

Transmission losses consist of conductor losses, dielectric losses as well as radiation losses. The
above expressions for the conductor and dielectric losses are considered to be first order approx-
imations. The conductor losses have been derived for a single round wire. The overall conductor
losses due to the twin wires must be doubled. The dielectric losses can be used as is. Radiation
losses are neglected.
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Chapter 14

Synthesizing circuits

14.1 Attenuators

Attenuators are used to damp a signal. Using pure ohmic resistors the circuit can be realized for
a very high bandwidth, i.e. from DC to many GHz. The power attenuation 0 < L ≤ 1 is defined
as:

L =
Pin

Pout
=

V 2
in

Zin
· Zout

V 2
out

=

(
Vin

Vout

)2

· Zout

Zin
(14.1)

where Pin and Pout are the input and output power and Vin and Vout are the input and output
voltages.

2

Y

Y

1 3Y

Figure 14.1: π-topology of an attenuator

Fig. 14.1 shows an attenuator using the π-topology. The conductances can be calculated as
follows.

Y2 =
L− 1

2 ·
√
L ·Zin ·Zout

(14.2)

Y1 = Y2 ·
(√

Zout

Zin
·L− 1

)

(14.3)

Y3 = Y2 ·
(√

Zin

Zout
·L− 1

)

(14.4)

where Zin and Zout are the input and output reference impedances, respectively. The π-
attenuator can be used for an impedance ratio of:

1

L
≤ Zout

Zin
≤ L (14.5)
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3Z

Z2

Z1

Figure 14.2: T-topology of an attenuator

Fig. 14.2 shows an attenuator using the T-topology. The resistances can be calculated as follows.

Z2 =
2 ·
√
L ·Zin ·Zout

L− 1
(14.6)

Z1 = Zin ·A− Z2 (14.7)

Z3 = Zout ·A− Z2 (14.8)

with A =
L+ 1

L− 1
(14.9)

where L is the attenuation (0 < L ≤ 1) according to equation 14.1 and Zin and Zout are the input
and output reference impedance, respectively. The T-attenuator can be used for an impedance
ratio of:

Zout

Zin
≤ (L+ 1)2

4 ·L (14.10)

14.2 Filters

One of the most common tasks in microwave technologies is to extract a frequency band from
others. Optimized filters exist in order to easily create a filter with an appropriate characteristic.
The most popular ones are:

Name Property
Bessel filter (Thomson filter) as constant group delay as possible
Butterworth filter (power-term filter) as constant amplitude transfer function as possible
Chebychev filter type I constant ripple in pass band
Chebychev filter type II constant ripple in stop band
Cauer filter (elliptical filter) constant ripple in pass and stop band

From top to bottom the following properties increase:

• ringing of step response

• phase distortion

• steepness of amplitude transfer function at the beginning of the pass band

The order n of a filter denotes the number of poles of its (voltage) transfer function. It is:

slope of asymptote = ±n · 20dB/decade (14.11)

Note that this equation holds for all filter characteristics, but there are big differences concerning
the attenuation near the pass band.
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14.2.1 LC ladder filters

The best possibility to realize a filters in VHF and UHF bands are LC ladder filters. The usual
way to synthesize them is to first calculate a low-pass (LP) filter and afterwards transform it
into a high-pass (HP), band-pass (BP) or band-stop (BS) filter. To do so, each component must
be transformed into another.

In a low-pass filter, there are parallel capacitors CLP and series inductors LLP in alternating
order. The other filter classes can be derived from it:

In a high-pass filter:

CLP → LHP =
1

ω2
B ·CLP

(14.12)

LLP → CHP =
1

ω2
B ·LLP

(14.13)

In a band-pass filter:

CLP → parallel resonance circuit with (14.14)

CBP =
CLP

∆Ω
(14.15)

LBP =
∆Ω

ω1 ·ω2 ·CLP
(14.16)

LLP → series resonance circuit with (14.17)

CBP =
∆Ω

ω1 ·ω2 ·LLP
(14.18)

LBP =
LLP

∆Ω
(14.19)

In a band-stop filter:

CLP → series resonance circuit with (14.20)

CBP =
CLP

2 ·
∣
∣
∣
∣

ω2

ω1
− ω1

ω2

∣
∣
∣
∣

(14.21)

LBP =
1

ω2 ·∆Ω ·CLP
(14.22)

LLP → parallel resonance circuit with (14.23)

CBP =
1

ω2 ·∆Ω ·LLP
(14.24)

LBP =
LLP

2 ·
∣
∣
∣
∣

ω2

ω1
− ω1

ω2

∣
∣
∣
∣

(14.25)
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Where

ω1 → lower corner frequency of frequency band (14.26)

ω2 → upper corner frequency of frequency band (14.27)

ω → center frequency of frequency band ω = 0.5 · (ω1 + ω2) (14.28)

∆Ω → ∆Ω =
|ω2 − ω1|

ω
(14.29)

Butterworth

The k-th element of an n order Butterworth low-pass ladder filter is:

capacitance: Ck =
Xk

Z0
(14.30)

inductance: Lk =Xk ·Z0 (14.31)

with Xk =
2

ωB
· sin (2 · k + 1) ·π

2 ·n (14.32)

The order of the Butterworth filter is dependent on the specifications provided by the user. These
specifications include the edge frequencies and gains.

n =

log

(
10−0.1 ·αstop − 1

10−0.1 ·αpass − 1

)

2 · log
(
ωstop

ωpass

) (14.33)

Chebyshev I

The equations for a Chebyshev type I filter are defined recursivly. With RdB being the passband
ripple in decibel, the k-th element of an n order low-pass ladder filter is:

capacitance: Ck =
Xk

Z0
(14.34)

inductance: Lk = Xk ·Z0 (14.35)

with Xk =
2

ωB
· gk (14.36)

r = sinh

(
1

n
· arsinh 1√

10RdB/10 − 1

)

(14.37)

ak = sin
(2 · k + 1) ·π

2 ·n (14.38)

gk =







ak
r

for k = 0
ak−1 · ak

gk−1 ·
(

r2 + sin2
k ·π
n

) for k ≥ 1 (14.39)

Xk =
2

ωB
· gk (14.40)

The order of the Chebychev filter is dependent on the specifications provided by the user. The
general form of the calculation for the order is the same as for the Butterworth, except that the
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inverse hyperbolic cosine function is used in place of the common logarithm function.

n =

sech

(
10−0.1 ·αstop − 1

10−0.1 ·αpass − 1

)

2 · sech
(
ωstop

ωpass

) (14.41)

Chebyshev II

Because of the nature of the derivation of the inverse Chebychev approxiation function from the
standard Chebychev approximation the calculation of the order (14.41) is the same.
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Chapter 15

Mathematical background

15.1 N-port matrix conversions

When dealing with n-port parameters it may be necessary or convenient to convert them into
other matrix representations used in electrical engineering. The following matrices and notations
are used in the transformation equations.
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[X ]
−1

= inverted matrix of [X]

[X ]∗ = complex conjugated matrix of [X]

[E] =








1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1








identity matrix

[S] = S-parameter matrix

[Z] = impedance matrix

[Y ] = admittance matrix

[
Zref

]
=








Z0,1 0 . . . 0
0 Z0,2 . . . 0
...

...
. . .

...
0 0 . . . Z0,N








Z0,n = reference impedance of port n

[Gref ] =








G1 0 . . . 0
0 G2 . . . 0
...

...
. . .

...
0 0 . . . GN








Gn =
1

√

Re
∣
∣Z0,n

∣
∣

15.1.1 Renormalization of S-parameters to different port impedances

During S-parameter usage it sometimes appears to have not all components in a circuit nor-
malized to the same impedance. But calculations can only be performed with all ports being
normalized to the same impedance. In the field of high frequency techniques this is usually 50Ω.
In order to transform to different port impedances, the following computation must be applied
to the resulting S-parameter matrix.

[S′] = [A]−1 · ([S]− [R]) · ([E]− [R] · [S])−1 · [A] (15.1)

With
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Zn = reference impedance of port n after the normalizing process

Zn,before = reference impedance of port n before the normalizing process

[S] = original S-parameter matrix

[S′] = recalculated scattering matrix

[R] =








r (Z1) 0 . . . 0
0 r (Z2) . . . 0
...

...
. . .

...
0 0 . . . r (ZN )








reflection coefficient matrix

r (Zn) =
Zn − Zn,before

Zn + Zn,before

[A] =








A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . AN








An =

√

Zn

Zn,before
· 1

Zn + Zn,before

15.1.2 Transformations of n-Port matrices

S-parameter, admittance and impedance matrices are not limited to One- or Two-Port definitions.
They are defined for an arbitrary number of ports. The following section contains transformation
formulas forth and back each matrix representation.

Converting a scattering parameter matrix to an impedance matrix is done by the following
formula.

[Z] =
[
Gref

]−1 · ([E]− [S])
−1 ·

(
[S] ·

[
Zref

]
+
[
Zref

])
·
[
Gref

]
(15.2)

=
[
Gref

]−1 · ([E]− [S])
−1 · ([S] + [E]) ·

[
Zref

]
·
[
Gref

]
(15.3)

Converting a scattering parameter matrix to an admittance matrix can be achieved by computing
the following formula.

[Y ] =
[
Gref

]−1 ·
(
[S] ·

[
Zref

]
+
[
Zref

])−1 · ([E]− [S]) ·
[
Gref

]
(15.4)

=
[
Gref

]−1 ·
[
Zref

]−1 · ([S] + [E])
−1 · ([E]− [S]) ·

[
Gref

]
(15.5)

Converting an impedance matrix to a scattering parameter matrix is done by th following formula.

[S] =
[
Gref

]
·
(
[Z]−

[
Zref

])
·
(
[Z] +

[
Zref

])−1 ·
[
Gref

]−1
(15.6)
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Converting an admittance matrix to a scattering parameter matrix is done by the following
formula.

[S] =
[
Gref

]
·
(
[E]−

[
Zref

]
· [Y ]

)
·
(
[E] +

[
Zref

]
· [Y ]

)−1 ·
[
Gref

]−1
(15.7)

Converting an impedance matrix to an admittance matrix is done by the following simple formula.

[Y ] = [Z]
−1

(15.8)

Converting an admittance matrix to an impedance matrix is done by the following simple formula.

[Z] = [Y ]
−1

(15.9)

15.1.3 Two-Port transformations

Two-Port matrix conversion based on current and voltage

1
transmission

twoport

I

V

I1 2

2V

Figure 15.1: twoport definition using current and voltage

There are five different matrix forms for the correlations between the quantities at the transmis-
sion twoport shown in fig. 15.1, each having its special meaning when connecting twoports with
each other.

• Y-parameters (also called admittance parameters)
(
I1
I2

)

=

(
Y 11 Y 12

Y 21 Y 22

)

·
(
V 1

V 2

)

(15.10)

• Z-parameters (also called impedance parameters)
(
V 1

V 2

)

=

(
Z11 Z12

Z21 Z22

)

·
(
I1
I2

)

(15.11)

• H-parameters (also called hybrid parameters)
(
V 1

I2

)

=

(
H11 H12

H21 H22

)

·
(
I1
V 2

)

(15.12)

• G-parameters (also called C-parameters)
(
I1
V 2

)

=

(
G11 G12

G21 G22

)

·
(
V 1

I2

)

(15.13)

• A-parameters (also called chain or ABCD-parameters)
(
V 1

I1

)

=

(
A11 A12

A21 A22

)

·
(
V 2

−I2

)

(15.14)
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parallel-parallel
connection

series-series
connection

series-parallel
connection

parallel-series
connection

cascaded twoports

Basically there are five different kinds of twoport connections. Using the corresponding twoport
matrix representations, complicated networks can be analysed by connecting elementary twoports.
The linear correlations between the complex currents and voltages rms values of a twoport are
described by four complex twoport parameters (i.e. the twoport matrix). These parameters are
used to describe the AC behaviour of the twoport.

• parallel-parallel connection: use Y-parameters: Y = Y1 + Y2

• series-series connection: use Z-parameters: Z = Z1 + Z2

• series-parallel connection: use H-parameters: H = H1 +H2

• parallel-series connection: use G-parameters: G = G1 +G2

• chain connection: use A-parameters: A = A1 ·A2

215



A Y Z H G

A
A11 A12

A21 A22

−Y22

Y21

−1
Y21

−∆Y

Y21

−Y11

Y21

Z11

Z21

∆Z

Z21

1

Z21

Z22

Z21

−∆H

H21

−H11

H21

−H22

H21

−1
H21

1

G21

G22

G21

G11

G21

∆G

G21

Y

A22

A12

−∆A

A12

−1
A12

A11

A12

Y11 Y12

Y21 Y22

Z22

∆Z

−Z12

∆Z
−Z21

∆Z

Z11

∆Z

1

H11

−H12

H11

H21

H11

∆H

H11

∆G

G22

G12

G22

−G21

G22

1

G22

Z

A11

A21

∆A

A21

1

A21

A22

A21

Y22

∆Y

−Y12

∆Y
−Y21

∆Y

Y11

∆Y

Z11 Z12

Z21 Z22

∆H

H22

H12

H22

−H21

H22

1

H22

1

G11

−G12

G11

G21

G11

∆G

G11

H

A12

A22

∆A

A22

−1
A22

A21

A22

1

Y11

−Y12

Y11

Y21

Y11

∆Y

Y11

∆Z

Z22

Z12

Z22

−Z21

Z22

1

Z22

H11 H12

H21 H22

G22

∆G

−G12

∆G
−G21

∆G

G11

∆G

G

A21

A11

−∆A

A11

1

A11

A12

A11

∆Y

Y22

Y12

Y22

−Y21

Y22

1

Y22

1

Z11

−Z12

Z11

Z21

Z11

∆Z

Z11

H22

∆H

−H12

∆H
−H21

∆H

H11

∆H

G11 G12

G21 G22

Two-Port matrix conversion based on signal waves

2

transmission
twoport

a1 b2

b a1

Figure 15.2: twoport definition using signal waves

There are two different matrix forms for the correlations between the quantities at the transmis-
sion twoport shown in fig. 15.2.

• S-parameters (also called scattering parameters)
(
b1
b2

)

=

(
S11 S12

S21 S22

)

·
(
a1
a2

)

(15.15)

• T-parameters (also called transfer scattering parameters)
(
a1
b1

)

=

(
T 11 T 12

T 21 T 22

)

·
(
b2
a2

)

(15.16)
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When connecting cascaded twoports it is possible to compute the resulting transfer scattering
parameters by the following equation.

T = T1 ·T2 (15.17)

According to Janusz A. Dobrowolski [59] the following table contains the matrix transformation
formulas.

S T

S
S11 S12

S21 S22

T12

T22

∆T

T22

1

T22

−T21

T22

T

−∆S

S21

S11

S21

−S22

S21

1

S21

T11 T12

T21 T22

Mixed Two-Port matrix conversions

Sometimes it may be useful to have a twoport matrix representation based on signal waves in
a representation based on voltage and current and the other way around. There are two more
parameters involved in this case: The reference impedance at port 1 (denoted as Z1) and the
reference impedance at port 2 (denoted as Z2).

Converting from scattering parameters to chain parameters results in

A11 =
Z∗
1 + Z1 ·S11 − Z∗

1 ·S22 − Z1 ·∆S

2 ·S21 ·
√

Re (Z1) ·Re (Z2)
(15.18)

A12 =
Z∗
1 ·Z∗

2 + Z1 ·Z∗
2 ·S11 + Z∗

1 ·Z2 ·S22 + Z1 ·Z2 ·∆S

2 ·S21 ·
√

Re (Z1) ·Re (Z2)
(15.19)

A21 =
1− S11 − S22 +∆S

2 ·S21 ·
√

Re (Z1) ·Re (Z2)
(15.20)

A22 =
Z∗
2 − Z∗

2 ·S11 + Z2 ·S22 − Z2 ·∆S

2 ·S21 ·
√

Re (Z1) ·Re (Z2)
(15.21)

Converting from chain parameters to scattering parameters results in

S11 =
A11 ·Z2 +A12 −A21 ·Z∗

1 ·Z2 −A22 ·Z∗
1

A11 ·Z2 +A12 +A21 ·Z1 ·Z2 +A22 ·Z1
(15.22)

S12 =
∆A · 2 ·

√

Re (Z1) ·Re (Z2)

A11 ·Z2 +A12 +A21 ·Z1 ·Z2 +A22 ·Z1
(15.23)

S21 =
2 ·
√

Re (Z1) ·Re (Z2)

A11 ·Z2 +A12 +A21 ·Z1 ·Z2 +A22 ·Z1
(15.24)

S22 =
−A11 ·Z∗

2 +A12 −A21 ·Z1 ·Z∗
2 +A22 ·Z1

A11 ·Z2 +A12 +A21 ·Z1 ·Z2 +A22 ·Z1
(15.25)
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Converting from scattering parameters to hybrid parameters results in

H11 = Z1 ·
(1 + S11) · (1 + S22)− S12 ·S21

(1− S11) · (1 + S22) + S12 ·S21
(15.26)

H12 =

√

Z1

Z2
· 2 ·S12

(1− S11) · (1 + S22) + S12 ·S21
(15.27)

H21 =

√
Z1

Z2
· −2 ·S21

(1− S11) · (1 + S22) + S12 ·S21
(15.28)

H22 =
1

Z2
· (1− S11) · (1− S22)− S12 ·S21

(1− S11) · (1 + S22) + S12 ·S21
(15.29)

Converting from hybrid parameters to scattering parameters results in

S11 =
(H11 − Z1) · (1 + Z2 ·H22)− Z2 ·H12 ·H21

(H11 + Z1) · (1 + Z2 ·H22)− Z2 ·H12 ·H21
(15.30)

S12 =
2 ·H12 ·

√
Z1 ·Z2

(H11 + Z1) · (1 + Z2 ·H22)− Z2 ·H12 ·H21
(15.31)

S21 =
−2 ·H21 ·

√
Z1 ·Z2

(H11 + Z1) · (1 + Z2 ·H22)− Z2 ·H12 ·H21
(15.32)

S22 =
(H11 + Z1) · (1− Z2 ·H22) + Z2 ·H12 ·H21

(H11 + Z1) · (1 + Z2 ·H22)− Z2 ·H12 ·H21
(15.33)

Converting from scattering parameters to the second type of hybrid parameters results in

G11 =
1

Z1
· (1− S11) · (1− S22)− S12 ·S21

(1 + S11) · (1− S22) + S12 ·S21
(15.34)

G12 =

√

Z2

Z1
· −2 ·S12

(1 + S11) · (1− S22) + S12 ·S21
(15.35)

G21 =

√
Z2

Z1
· 2 ·S21

(1 + S11) · (1− S22) + S12 ·S21
(15.36)

G22 = Z2 ·
(1 + S11) · (1 + S22)− S12 ·S21

(1 + S11) · (1− S22) + S12 ·S21
(15.37)

Converting from the second type of hybrid parameters to scattering parameters results in

S11 =
(1−G11 ·Z1) · (G22 + Z2) + Z1 ·G12 ·G21

(1 +G11 ·Z1) · (G22 + Z2)− Z1 ·G12 ·G21
(15.38)

S12 =
−2 ·G12 ·

√
Z1 ·Z2

(1 +G11 ·Z1) · (G22 + Z2)− Z1 ·G12 ·G21
(15.39)

S21 =
2 ·G21 ·

√
Z1 ·Z2

(1 +G11 ·Z1) · (G22 + Z2)− Z1 ·G12 ·G21
(15.40)

S22 =
(1 +G11 ·Z1) · (G22 − Z2)− Z1 ·G12 ·G21

(1 +G11 ·Z1) · (G22 + Z2)− Z1 ·G12 ·G21
(15.41)
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Converting from scattering parameters to Y-parameters results in

Y11 =
1

Z1
· (1− S11) · (1 + S22) + S12 ·S21

(1 + S11) · (1 + S22)− S12 ·S21
(15.42)

Y12 =

√
1

Z1 ·Z2
· −2 ·S12

(1 + S11) · (1 + S22)− S12 ·S21
(15.43)

Y21 =

√
1

Z1 ·Z2
· −2 ·S21

(1 + S11) · (1 + S22)− S12 ·S21
(15.44)

Y22 =
1

Z2
· (1 + S11) · (1− S22) + S12 ·S21

(1 + S11) · (1 + S22)− S12 ·S21
(15.45)

Converting from Y-parameters to scattering parameters results in

S11 =
(1− Y11 ·Z1) · (1 + Y22 ·Z2) + Y12 ·Z1 ·Y21 ·Z2

(1 + Y11 ·Z1) · (1 + Y22 ·Z2)− Y12 ·Z1 ·Y21 ·Z2
(15.46)

S12 =
−2 ·Y12 ·

√
Z1 ·Z2

(1 + Y11 ·Z1) · (1 + Y22 ·Z2)− Y12 ·Z1 ·Y21 ·Z2
(15.47)

S21 =
−2 ·Y21 ·

√
Z1 ·Z2

(1 + Y11 ·Z1) · (1 + Y22 ·Z2)− Y12 ·Z1 ·Y21 ·Z2
(15.48)

S22 =
(1 + Y11 ·Z1) · (1− Y22 ·Z2) + Y12 ·Z1 ·Y21 ·Z2

(1 + Y11 ·Z1) · (1 + Y22 ·Z2)− Y12 ·Z1 ·Y21 ·Z2
(15.49)

Converting from scattering parameters to Z-parameters results in

Z11 = Z1 ·
(1 + S11) · (1− S22) + S12 ·S21

(1− S11) · (1− S22)− S12 ·S21
(15.50)

Z12 =
2 ·S12 ·

√
Z1 ·Z2

(1− S11) · (1− S22)− S12 ·S21
(15.51)

Z21 =
2 ·S21 ·

√
Z1 ·Z2

(1− S11) · (1− S22)− S12 ·S21
(15.52)

Z22 = Z2 ·
(1− S11) · (1 + S22) + S12 ·S21

(1− S11) · (1− S22)− S12 ·S21
(15.53)

Converting from Z-parameters to scattering parameters results in

S11 =
(Z11 − Z1) · (Z22 + Z2)− Z12 ·Z21

(Z11 + Z1) · (Z22 + Z2)− Z12 ·Z21
(15.54)

S12 =

√
Z2

Z1
· 2 ·Z12 ·Z1

(Z11 + Z1) · (Z22 + Z2)− Z12 ·Z21
(15.55)

S21 =

√

Z1

Z2
· 2 ·Z21 ·Z2

(Z11 + Z1) · (Z22 + Z2)− Z12 ·Z21
(15.56)

S22 =
(Z11 + Z1) · (Z22 − Z2)− Z12 ·Z21

(Z11 + Z1) · (Z22 + Z2)− Z12 ·Z21
(15.57)

Two-Port parameters of passive devices

Basically the twoport parameters of passive twoports can be determined using Kirchhoff’s voltage
law and Kirchhoff’s current law or by applying the definition equations of the twoport parameters.
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This has been done [60] for some example circuits.

• T-topology

3Z

Z2

Z1

Z =

[
Z1 + Z2 Z2

Z2 Z2 + Z3

]

• π-topology

2

Y

Y

1 3Y

Y =

[
Y1 + Y2 −Y2

−Y2 Y2 + Y3

]

• symmetric T-bridge

1

2

Z1

Z3

Z

Z

Z =






Z2
1 + Z1 ·Z3

2 ·Z1 + Z3
+ Z2

Z2
1

2 ·Z1 + Z3
+ Z2

Z2
1

2 ·Z1 + Z3
+ Z2

Z2
1 + Z1 ·Z3

2 ·Z1 + Z3
+ Z2






• symmetric X-topology
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2Z

1Z 1Z

2Z

Z =
1

2

[
Z1 + Z2 Z1 − Z2

Z1 − Z2 Z1 + Z2

]

15.2 Solving linear equation systems

When dealing with non-linear networks the number of equation systems to be solved depends
on the required precision of the solution and the average necessary iterations until the solution
is stable. This emphasizes the meaning of the solving procedures choice for different problems.

The equation systems
[A] · [x] = [z] (15.58)

solution can be written as
[x] = [A]

−1 · [z] (15.59)

15.2.1 Matrix inversion

The elements βµν of the inverse of the matrix A are

βµν =
Aµν

detA
(15.60)

whereas Aµν is the matrix elements aµν cofactor. The cofactor is the sub determinant (i.e. the
minor) of the element aµν multiplied with (−1)µ+ν . The determinant of a square matrix can be
recursively computed by either of the following equations.

detA =

n∑

µ=1

aµν ·Aµν using the ν-th column (15.61)

detA =

n∑

ν=1

aµν ·Aµν using the µ-th row (15.62)

This method is called the Laplace expansion. In order to save computing time the row or
column with the most zeros in it is used for the expansion expressed in the above equations. A
sub determinant (n−1)-th order of a matrix’s element aµν of n-th order is the determinant which
is computed by cancelling the µ-th row and ν-th column. The following example demonstrates
calculating the determinant of a 4th order matrix with the elements of the 3rd row.

∣
∣
∣
∣
∣
∣
∣
∣

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

∣
∣
∣
∣
∣
∣
∣
∣

= a31

∣
∣
∣
∣
∣
∣

a12 a13 a14
a22 a23 a24
a42 a43 a44

∣
∣
∣
∣
∣
∣

− a32

∣
∣
∣
∣
∣
∣

a11 a13 a14
a21 a23 a24
a41 a43 a44

∣
∣
∣
∣
∣
∣

(15.63)

+ a33

∣
∣
∣
∣
∣
∣

a11 a12 a14
a21 a22 a24
a41 a42 a44

∣
∣
∣
∣
∣
∣

− a34

∣
∣
∣
∣
∣
∣

a11 a12 a13
a21 a22 a23
a41 a42 a43

∣
∣
∣
∣
∣
∣
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This recursive process for computing the inverse of a matrix is most easiest to be implemented
but as well the slowest algorithm. It requires approximately n! operations.

15.2.2 Gaussian elimination

The Gaussian algorithm for solving a linear equation system is done in two parts: forward
elimination and backward substitution. During forward elimination the matrix A is transformed
into an upper triangular equivalent matrix. Elementary transformations due to an equation
system having the same solutions for the unknowns as the original system.

A =








a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann







→








a11 a12 . . . a1n
0 a22 . . . a2n
...

...
. . .

...
0 . . . 0 ann








(15.64)

The modifications applied to the matrix A in order to achieve this transformations are limited
to the following set of operations.

• multiplication of a row with a scalar factor

• addition or subtraction of multiples of rows

• exchanging two rows of a matrix

Step 1: Forward elimination

The transformation of the matrix A is done in n− 1 elimination steps. The new matrix elements
of the k-th step with k = 1, . . . , n− 1 are computed with the following recursive formulas.

aij = 0 i = k + 1, . . . , n and j = k (15.65)

aij = aij − akj · aik/akk i = k + 1, . . . , n and j = k + 1, . . . , n (15.66)

zi = zi − zk · aik/akk i = k + 1, . . . , n (15.67)

The triangulated matrix can be used to calculate the determinant very easily. The determinant
of a triangulated matrix is the product of the diagonal elements. If the determinant detA is
non-zero the equation system has a solution. Otherwise the matrix A is singular.

detA = a11 ·a22 · . . . · ann =

n∏

i=1

aii (15.68)

When using row and/or column pivoting the resulting determinant may differ in its sign and
must be multiplied with (−1)m whereas m is the number of row and column substitutions.

Finding an appropriate pivot element

The Gaussian elimination fails if the pivot element akk turns to be zero (division by zero). That
is why row and/or column pivoting must be used before each elimination step. If a diagonal
element akk = 0, then exchange the pivot row k with the row m > k having the coefficient with
the largest absolute value. The new pivot row is m and the new pivot element is going to be
amk. If no such pivot row can be found the matrix is singular.
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Total pivoting looks for the element with the largest absolute value within the matrix and
exchanges rows and columns. When exchanging columns in equation systems the unknowns get
reordered as well. For the numerical solution of equation systems with Gaussian elimination
column pivoting is clever, and total pivoting recommended.

In order to improve numerical stability pivoting should also be applied if akk 6= 0 because division
by small diagonal elements propagates numerical (rounding) errors. This appears especially with
poorly conditioned (the two dimensional case: two lines with nearly the same slope) equation
systems.

Step 2: Backward substitution

The solutions in the vector x are obtained by backward substituting into the triangulated matrix.
The elements of the solution vector x are computed by the following recursive equations.

xn =
zn
ann

(15.69)

xi =
zi
aii
−

n∑

k=i+1

xk ·
aik
aii

i = n− 1, . . . , 1 (15.70)

The forward elimination in the Gaussian algorithm requires approximately n3/3, the backward
substitution n2/2 operations.

15.2.3 Gauss-Jordan method

The Gauss-Jordanmethod is a modification of the Gaussian elimination. In each k-th elimination
step the elements of the k-th column get zero except the diagonal element which gets 1. When
the right hand side vector z is included in each step it contains the solution vector x afterwards.

The following recursive formulas must be applied to get the new matrix elements for the k-th
elimination step. The k-th row must be computed first.

akj = akj/akk j = 1 . . . n (15.71)

zk = zk/akk (15.72)

Then the other rows can be calculated with the following formulas.

aij = aij − aik · akj j = 1, . . . , n and i = 1, . . . , n with i 6= k (15.73)

zi = zi − aik · zk i = 1, . . . , n with i 6= k (15.74)

Column pivoting may be necessary in order to avoid division by zero. The solution vector x is not
harmed by row substitutions. When the Gauss-Jordan algorithm has been finished the original
matrix has been transformed into the identity matrix. If each operation during this process is
applied to an identity matrix the resulting matrix is the inverse matrix of the original matrix.
This means that the Gauss-Jordan method can be used to compute the inverse of a matrix.

Though this elimination method is easy to implement the number of required operations is
larger than within the Gaussian elimination. The Gauss-Jordan method requires approximately
N3/2 +N2/2 operations.
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15.2.4 LU decomposition

LU decomposition (decomposition into a lower and upper triangular matrix) is recommended
when dealing with equation systems where the matrix A does not alter but the right hand side
(the vector z) does. Both the Gaussian elimination and the Gauss-Jordan method involve both
the right hand side and the matrix in their algorithm. Consecutive solutions of an equation
system with an altering right hand side can be computed faster with LU decomposition.

The LU decomposition splits a matrix A into a product of a lower triangular matrix L with an
upper triangular matrix U.

A = LU with L =









l11 0 . . . 0

l21 l22
. . .

...
...

. . . 0
ln1 . . . . . . lnn









and U =









u11 u12 . . . u1n

0 u22

...
...

. . .
. . .

...
0 . . . 0 unn









(15.75)

The algorithm for solving the linear equation system Ax = z involves three steps:

• LU decomposition of the coefficient matrix A
→ Ax = LUx = z

• introduction of an (unknown) arbitrary vector y and solving the equation system Ly = z
by forward substitution
→ y = Ux = L−1z

• solving the equation system Ux = y by backward substitution
→ x = U−1y

The decomposition of the matrix A into a lower and upper triangular matrix is not unique. The
most important decompositions, based on Gaussian elimination, are the Doolittle, the Crout and
the Cholesky decomposition.

If pivoting is necessary during these algorithms they do not decompose the matrix A but the
product with an arbitrary matrix PA (a permutation of the matrix A). When exchanging rows
and columns the order of the unknowns as represented by the vector z changes as well and must
be saved during this process for the forward substitution in the algorithms second step.

Step 1: LU decomposition

Using the decomposition according to Crout the coefficients of the L and U matrices can be
stored in place the original matrix A. The upper triangular matrix U has the form

U =









1 u12 . . . u1n

0 1
...

...
. . .

. . . un−1,n

0 . . . 0 1









(15.76)

The diagonal elements ujj are ones and thus the determinant detU is one as well. The elements
of the new coefficient matrix LU for the k-th elimination step with k = 1, . . . , n compute as
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follows:

ujk =
1

ljj

(

ajk −
j−1
∑

r=1

ljrurk

)

j = 1, . . . , k − 1 (15.77)

ljk = ajk −
k−1∑

r=1

ljrurk j = k, . . . , n (15.78)

Pivoting may be necessary as you are going to divide by the diagonal element ljj .

Step 2: Forward substitution

The solutions in the arbitrary vector y are obtained by forward substituting into the triangulated
L matrix. At this stage you need to remember the order of unknowns in the vector z as changed
by pivoting. The elements of the solution vector y are computed by the following recursive
equation.

yi =
zi
lii
−

i−1∑

k=1

yk ·
lik
lii

i = 1, . . . , n (15.79)

Step 3: Backward substitution

The solutions in the vector x are obtained by backward substituting into the triangulated U
matrix. The elements of the solution vector x are computed by the following recursive equation.

xi = yi −
n∑

k=i+1

xk ·uik i = n, . . . , 1 (15.80)

The division by the diagonal elements of the matrix U is not necessary because of Crouts definition
in eq. (15.76) with uii = 1.

The LU decomposition requires approximately n3/3 + n2 − n/3 operations for solving a linear
equation system. For M consecutive solutions the method requires n3/3+Mn2−n/3 operations.

15.2.5 QR decomposition

Singular matrices actually having a solution are over- or under-determined. These types of
matrices can be handled by three different types of decompositions: Householder, Jacobi (Givens
rotation) and singular value decomposition. Householder decomposition factors a matrix A into
the product of an orthonormal matrix Q and an upper triangular matrix R, such that:

A = Q ·R (15.81)

The Householder decomposition is based on the fact that for any two different vectors, v and w,
with ‖v‖ = ‖w‖, i.e. different vectors of equal length, a reflection matrix H exists such that:

H · v = w (15.82)
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To obtain the matrix H , the vector u is defined by:

u =
v − w

‖v − w‖ (15.83)

The matrix H defined by
H = I − 2 ·u ·uT (15.84)

is then the required reflection matrix.

The equation system
A ·x = z is transformed into QR ·x = z (15.85)

With QT ·Q = I this yields

QTQR ·x = QT z → R ·x = QT z (15.86)

Since R is triangular the equation system is solved by a simple matrix-vector multiplication on
the right hand side and backward substitution.

Step 1: QR decomposition

Starting with A1 = A, let v1 = the first column of A1, and wT
1 = (±‖v1‖, 0, . . . 0), i.e. a column

vector whose first component is the norm of v1 with the remaining components equal to 0. The
Householder transformation H1 = I − 2 ·u1 ·uT

1 with u1 = v1 − w1/‖v1 − w1‖ will turn the first
column of A1 into w1 as with H1 ·A1 = A2. At each stage k, vk = the kth column of Ak on and
below the diagonal with all other components equal to 0, and wk’s kth component equals the
norm of vk with all other components equal to 0. Letting Hk ·Ak = Ak+1, the components of
the kth column of Ak+1 below the diagonal are each 0. These calculations are listed below for
each stage for the matrix A.

v1 =








a11
a21
...

an1








w1 =








±‖v1‖
0
...
0








u1 =
v1 − w1

‖v1 − w1‖
=








u11

u21

...
un1








H1 = I − 2 ·u1 ·uT
1 → H1 ·A1 = A2 =








a11 a12 . . . a1n
0 a22 . . . a2n
...

...
. . .

...
0 an2 . . . ann








(15.87)

With this first step the upper left diagonal element of the R matrix, a11 = ±‖v1‖, has been
generated. The elements below are zeroed out. Since H1 can be generated from u1 stored in
place of the first column of A1 the multiplication H1 ·A1 can be performed without actually
generating H1.
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v2 =








0
a22
...

an2








w1 =








0
±‖v2‖

...
0








u2 =
v2 − w2

‖v2 − w2‖
=








0
u22

...
un2








H2 = I − 2 ·u2 ·uT
2 → H2 ·A2 = A3 =








a11 a12 . . . a1n
0 a22 . . . a2n
... 0

. . .
...

0 0 ann








(15.88)

These elimination steps generate the R matrix because Q is orthonormal, i.e.

A = Q ·R → QTA = QTQ ·R → QTA = R

→ Hn · . . . ·H2 ·H1 ·A = R
(15.89)

After n elimination steps the original matrix A contains the upper triangular matrix R, except for
the diagonal elements which can be stored in some vector. The lower triangular matrix contains
the Householder vectors u1 . . . un.

A =








u11 r12 . . . r1n
u21 u22 r2n
...

...
. . .

...
un1 un2 . . . unn








Rdiag =








r11
r22
...

rnn








(15.90)

With QT = H1 ·H2 · . . . ·Hn this representation contains both the Q and R matrix, in a packed
form, of course: Q as a composition of Householder vectors and R in the upper triangular part
and its diagonal vector Rdiag.

Step 2: Forming the new right hand side

In order to form the right hand side QT z let remember eq. (15.84) denoting the reflection
matrices used to compute QT .

Hn · . . . ·H2 ·H1 = QT (15.91)

Thus it is possible to replace the original right hand side vector z by

Hn · . . . ·H2 ·H1 · z = QT · z (15.92)

which yields for each k = 1 . . . n the following expression:

Hk · z =
(
I − 2 ·uk ·uT

k

)
· z = z − 2 ·uk ·uT

k · z (15.93)

The latter uT
k · z is a simple scalar product of two vectors. Performing eq. (15.93) for each

Householder vector finally results in the new right hand side vector QT z.

Step 3: Backward substitution

The solutions in the vector x are obtained by backward substituting into the triangulated R
matrix. The elements of the solution vector x are computed by the following recursive equation.

xi =
zi
rii
−

n∑

k=i+1

xk ·
rik
rii

i = n, . . . , 1 (15.94)
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Motivation

Though the QR decomposition has an operation count of 2n3 + 3n2 (which is about six times
more than the LU decomposition) it has its advantages. The QR factorization method is said
to be unconditional stable and more accurate. Also it can be used to obtain the minimum-norm
(or least square) solution of under-determined equation systems.

R2
R=10 Ohm

I1
I=100 mA

R1
R=10 Ohm I2

I=100 mA

Node2
Node1 Node3

Figure 15.3: circuit with singular modified nodal analysis matrix

The circuit in fig. 15.3 has the following MNA representation:

Ax =





1
R2

0 0

0 1
R1

− 1
R1

0 − 1
R1

1
R1



 ·





V1

V2

V3



 =





0.1 0 0
0 0.1 −0.1
0 −0.1 0.1



 ·





V1

V2

V3



 =





I1
−I1
I2



 =





0.1
−0.1
0.1



 = z

(15.95)
The second and third row of the matrix A are linear dependent and the matrix is singular because
its determinant is zero. Depending on the right hand side z, the equation system has none or
unlimited solutions. This is called an under-determined system. The discussed QR decomposi-
tion easily computes a valid solution without reducing accuracy. The LU decomposition would
probably fail because of the singularity.

QR decomposition with column pivoting

Least norm problem

With some more effort it is possible to obtain the minimum-norm solution of this problem. The
algorithm as described here would probably yield the following solution:

x =





V1

V2

V3



 =





1
0
1



 (15.96)

This is one out of unlimited solutions. The following short description shows how it is possible
to obtain the minimum-norm solution. When decomposing the transposed problem

AT = Q ·R (15.97)

the minimum-norm solution x̂ is obtained by forward substitution of

RT ·x = z (15.98)
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and multiplying the result with Q.
x̂ = Q ·x (15.99)

In the example above this algorithm results in a solution vector with the least vector norm
possible:

x̂ =





V1

V2

V3



 =





1
−0.5
0.5



 (15.100)

This algorithm outline is also sometimes called LQ decomposition because of RT being a lower
triangular matrix used by the forward substitution.

15.2.6 Singular value decomposition

Very bad conditioned (ratio between largest and smallest eigenvalue) matrices, i.e. nearly singu-
lar, or even singular matrices (over- or under-determined equation systems) can be handled by
the singular value decomposition (SVD). This type of decomposition is defined by

A = U ·Σ ·V H (15.101)

where the U matrix consists of the orthonormalized eigenvectors associated with the eigenvalues
of A ·AH , V consists of the orthonormalized eigenvectors of AH ·A and Σ is a matrix with the
singular values of A (non-negative square roots of the eigenvalues of AH ·A) on its diagonal and
zeros otherwise.

Σ =








σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σn








(15.102)

The singular value decomposition can be used to solve linear equation systems by simple substi-
tutions

A ·x = z (15.103)

U ·Σ ·V H ·x = z (15.104)

Σ ·V H ·x = UH · z (15.105)

since
UH ·U = V H ·V = V ·V H = I (15.106)

To obtain the decomposition stated in eq. (15.101) Householder vectors are computed and their
transformations are applied from the left-hand side and right-hand side to obtain an upper
bidiagonal matrix B which has the same singular values as the original A matrix because all of
the transformations introduced are orthogonal.

U
H (n)
B · . . . ·UH (1)

B ·A ·V (1)
B · . . . ·V (n−2)

B = UH
B ·A ·VB = B(0) (15.107)

Specifically, U
H (i)
B annihilates the subdiagonal elements in column i and V

(j)
B zeros out the

appropriate elements in row j.

B(0) =










β1 δ2 0 · · · 0
0 β2 δ3 0 0
... 0

. . .
. . . 0

0 0 0 βn−1 δn
0 0 0 0 βn










(15.108)
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Afterwards an iterative process (which turns out to be a QR iteration) is used to transform
the bidiagonal matrix B into a diagonal form by applying successive Givens transformations
(therefore orthogonal as well) to the bidiagonal matrix. This iteration is said to have cubic
convergence and yields the final singular values of the matrix A.

B(0) → B(1) → . . .→ Σ (15.109)

B(k+1) =
(

Ũ (k)
)H

·B(k) · Ṽ (k) (15.110)

Each of the transformations applied to the bidiagonal matrix is also applied to the matrices UB

and V H
B which finally yield the U and V H matrices after convergence.

So far for the algorithm outline. Without the very details the following sections briefly describe
each part of the singular value decomposition.

Notation

Beforehand some notation marks are going to be defined.

• Conjugate transposed (or adjoint):

A→
(
AT
)∗

= (A∗)
T
= AH

• Euclidean norm:

‖x‖ =

√
√
√
√

n∑

i=1

xi ·x∗
1 =

√
√
√
√

n∑

i=1

|xi|2 =
√

|x1|2 + · · ·+ |xn|2 =
√
x ·xH

• Hermitian (or self adjoint):
A = AH

whereas AH denotes the conjugate transposed matrix of A. In the real case the matrix A
is then said to be “symmetric”.

• Unitary:
A ·AH = AH ·A = I

Real matrices A with this property are called “orthogonal”.

Householder reflector

A Householder matrix is an elementary unitary matrix that is Hermitian. Its fundamental use is
their ability to transform a vector x to a multiple of ~e1, the first column of the identity matrix.
The elementary Hermitian (i.e. the Householder matrix) is defined as

H = I − 2 ·u ·uH where uH ·u = 1 (15.111)

Beside excellent numerical properties, their application demonstrates their efficiency. If A is a
matrix, then

H ·A = A− 2 ·u ·uH ·A (15.112)

= A− 2 ·u ·
(
AH ·u

)H

and hence explicit formation and storage of H is not required. Also columns (or rows) can be
transformed individually exploiting the fact that uH ·A yields a scalar product for single columns
or rows.
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Specific case In order to reduce a 4×4 matrix A to upper triangular form successive House-
holder reflectors must be applied.

A =







a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44







(15.113)

In the first step the diagonal element a11 gets replaced and its below elements get annihilated
by the multiplication with an appropriate Householder vector, also the remaining right-hand
columns get modified.

u1 =







u11

u21

u31

u41







H1 = I − 2 ·u1 ·uH
1 → A1 = H1 ·A =








β1 a
(1)
12 a

(1)
13 a

(1)
14

0 a
(1)
22 a

(1)
23 a

(1)
24

0 a
(1)
32 a

(1)
33 a

(1)
34

0 a
(1)
42 a

(1)
43 a

(1)
44








(15.114)

This process must be repeated

u2 =







0
u22

u32

u42







H2 = I − 2 ·u2 ·uH
2 → A2 = H2 ·A1 =








β1 a
(2)
12 a

(2)
13 a

(2)
14

0 β2 a
(2)
23 a

(2)
24

0 0 a
(2)
33 a

(2)
34

0 0 a
(2)
43 a

(2)
44








(15.115)

u3 =







0
0
u33

u43







H3 = I − 2 ·u3 ·uH
3 → A3 = H3 ·A2 =








β1 a
(3)
12 a

(3)
13 a

(3)
14

0 β2 a
(3)
23 a

(3)
24

0 0 β3 a
(3)
34

0 0 0 a
(3)
44








(15.116)

u4 =







0
0
0
u44







H4 = I − 2 ·u4 ·uH
4 → A4 = H4 ·A3 =








β1 a
(4)
12 a

(4)
13 a

(4)
14

0 β2 a
(4)
23 a

(4)
24

0 0 β3 a
(4)
34

0 0 0 β4








(15.117)

until the matrix A contains an upper triangular matrix R. The matrix Q can be expressed as
the the product of the Householder vectors. The performed operations deliver

HH
4 ·HH

3 ·HH
2 ·HH

1 ·A = QH ·A = R → A = Q ·R (15.118)

since Q is unitary. The matrix Q itself can be expressed in terms of Hi using the following
transformation.

QH = HH
4 ·HH

3 ·HH
2 ·HH

1 (15.119)
(
QH
)H

=
(
HH

4 ·HH
3 ·HH

2 ·HH
1

)H
(15.120)

Q = H1 ·H2 ·H3 ·H4 (15.121)

The eqn. (15.119)-(15.121) are necessary to be mentioned only in case Q is not Hermitian, but
still unitary. Otherwise there is no difference computing Q or QH using the Householder vectors.
No care must be taken in choosing forward or backward accumulation.
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General case In the general case it is necessary to find an elementary unitary matrix

H = I − τ ·u ·uH (15.122)

that satisfies the following three conditions.

|τ |2 ·uH ·u = τ + τ∗ = 2 ·Re {τ} , HH ·x = γ · ‖x‖ ·~e1 , |γ| = 1 (15.123)

When choosing the elements uii = 1 it is possible the store the Householder vectors as well as
the upper triangular matrix R in the same storage of the matrix A. The Householder matrices
Hi can be completely restored from the Householder vectors.

A =







β1 a12 a13 a14
u21 β2 a23 a24
u31 u32 β3 a34
u41 u42 u43 β4







(15.124)

There exist several approaches to meet the conditions expressed in eq. (15.123). For fewer
computational effort it may be convenient to choose γ to be real valued. With the notation

HH ·x = HH ·







α
x2

x3

x4






=







β
0
0
0







(15.125)

one possibility is to define the following calculation rules.

ν = sign (Re {α}) · ‖x‖ (15.126)

τ =
α+ ν

ν
(15.127)

γ = −1 (15.128)

β = γ · ‖x‖ = −‖x‖ → real valued (15.129)

u =
x+ ν ·~e1
α+ ν

→ uii = 1 (15.130)

These definitions yield a complex τ , thus H is no more Hermitian but still unitary.

H = I − τ ·u ·uH → HH = I − τ∗ ·u ·uH (15.131)

232



Givens rotation

A Givens rotation is a plane rotation matrix. Such a plane rotation matrix is an orthogonal
matrix that is different from the identity matrix only in four elements.

M =


























1 0 · · · · · · 0

0
. . .

...
... 1

+c 0 · · · 0 +s
0 1 0
...

. . .
...

0 1 0
−s 0 · · · 0 +c

1
...

...
. . . 0

0 · · · · · · 0 1


























(15.132)

The elements are usually chosen so that

R =

[
c s
−s c

]

c = cos θ, s = sin θ → |c|2 + |s|2 = 1 (15.133)

The most common use of such a plane rotation is to choose c and s such that for a given a and b

R =

[
c s
−s c

]

·
[
a
b

]

=

[
d
0

]

(15.134)

multiplication annihilates the lower vector entry. In such an application the matrix R is often
termed “Givens rotation” matrix. The following equations satisfy eq. (15.134) for a given a and
b exploiting the conditions given in eq. (15.133).

c =
±a

√

|a|2 + |b|2
and s =

±b
√

|a|2 + |b|2
(15.135)

d =

√

|a|2 + |b|2 (15.136)

Eigenvalues of a 2-by-2 matrix

The eigenvalues of a 2-by-2 matrix

A =

[
a b
c d

]

(15.137)

can be obtained directly from the quadratic formula. The characteristic polynomial is

det (A− µI) = det

[
a− µ b
c d− µ

]

= (a− µ) · (d− µ)− bc

0 = µ2 − (a+ d) ·µ+ (ad− bc)

(15.138)
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The polynomial yields the two eigenvalues.

µ1,2 =
a+ d

2
±

√
(
a+ d

2

)2

+ bc− ad (15.139)

For a symmetric matrix A (i.e. b = c) eq.(15.139) can be rewritten to:

µ1,2 = e+ d±
√

e2 + b2 with e =
a− d

2
(15.140)

Step 1: Bidiagonalization

In the first step the original matrix A is bidiagonalized by the application of Householder reflec-
tions from the left and right hand side. The matrices UH

B and VB can each be determined as a
product of Householder matrices.

U
H (n)
B · . . . ·UH (1)

B
︸ ︷︷ ︸

UH
B

·A · V (1)
B · . . . ·V (n−2)

B
︸ ︷︷ ︸

VB

= UH
B ·A ·VB = B(0) (15.141)

Each of the required Householder vectors are created and applied as previously defined. Suppose
a n×n matrix, then applying the first Householder vector from the left hand side eliminates the
first column and yields

U
H (1)
B ·A =











β1 a
(1)
12 a

(1)
13 · · · a

(1)
1n

u21 a
(1)
22 a

(1)
23 a

(1)
2n

u31 a
(1)
32 a

(1)
33 a

(1)
3n

...
. . .

...

un1 a
(1)
n2 a

(1)
n3 · · · a

(1)
nn











(15.142)

Next, a Householder vector is applied from the right hand side to annihilate the first row.

U
H (1)
B ·A ·V (1)

B =











β1 δ2 v13 · · · v1n

u21 a
(2)
22 a

(2)
23 a

(2)
2n

u31 a
(2)
32 a

(2)
33 a

(2)
3n

...
. . .

...

un1 a
(2)
n2 a

(2)
n3 · · · a

(2)
nn











(15.143)

Again, a Householder vector is applied from the left hand side to annihilate the second column.

U
H (2)
B ·UH (1)

B ·A ·V (1)
B =











β1 δ2 v13 · · · v1n

u21 β2 a
(3)
23 a

(3)
2n

u31 u32 a
(3)
33 a

(3)
3n

...
...

. . .
...

un1 un2 a
(3)
n3 · · · a

(3)
nn











(15.144)
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This process is continued until

UH
B ·A ·VB =











β1 δ2 v13 · · · v1n
u21 β2 δ3 v2n

u31 u32
. . .

. . .
...

... βn−1 δn
un1 un2 un3 βn











(15.145)

For each of the Householder transformations from the left and right hand side the appropriate τ
values must be stored in separate vectors.

Step 2: Matrix reconstructions

Using the Householder vectors stored in place of the original A matrix and the appropriate τ
value vectors it is now necessary to unpack the UB and V H

B matrices. The diagonal vector β and
the super-diagonal vector δ can be saved in separate vectors previously. Thus the UB matrix can
be unpacked in place of the A matrix and the V H

B matrix is unpacked in a separate matrix.

There are two possible algorithms for computing the Householder product matrices, i.e. for-
ward accumulation and backward accumulation. Both start with the identity matrix which is
successively multiplied by the Householder matrices either from the left or right.

UH
B = HH

Un · . . . ·HH
U2 ·HH

U1 · I (15.146)

→ UB = I ·HUn · . . . ·HU2 ·HU1 (15.147)

Recall that the leading portion of each Householder matrix is the identity except the first. Thus,
at the beginning of backward accumulation, UB is “mostly the identity” and it gradually becomes
full as the iteration progresses. This pattern can be exploited to reduce the number of required
flops. In contrast, UH

B is full in forward accumulation after the first step. For this reason,
backward accumulation is cheaper and the strategy of choice. When unpacking the UB matrix
in place of the original A matrix it is necessary to choose backward accumulation anyway.

VB = I ·HH
V 1 ·HH

V 2 · . . . ·HH
V n (15.148)

→ V H
B = I ·HV n · . . . ·HV 2 ·HV 1 (15.149)

Unpacking the V H
B matrix is done in a similar way also performing successive Householder matrix

multiplications using backward accumulation.

Step 3: Diagonalization – shifted QR iteration

At this stage the matrices UB and V H
B exist in unfactored form. Also there are the diagonal

vector β and the super-diagonal vector δ. Both vectors are real valued. Thus the following
algorithm can be applied even though solving a complex equation system.

B(0) =










β1 δ2 0 · · · 0
0 β2 δ3 0 0
... 0

. . .
. . . 0

0 0 0 βn−1 δn
0 0 0 0 βn










(15.150)
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The remaining problem is thus to compute the SVD of the matrix B. This is done applying an
implicit-shift QR step to the tridiagonal matrix T = BTB which is a symmetric. The matrix T
is not explicitly formed that is why a QR iteration with implicit shifts is applied.

After bidiagonalization we have a bidiagonal matrix B(0):

B(0) = UH
B ·A ·VB (15.151)

The presented method turns B(k) into a matrix B(k+1) by applying a set of orthogonal transforms

B(k+1) = ŨH ·B(k) · Ṽ (15.152)

The orthogonal matrices Ũ and Ṽ are chosen so that B(k+1) is also a bidiagonal matrix, but
with the super-diagonal elements smaller than those of B(k). The eq.(15.152) is repeated until
the non-diagonal elements of B(k+1) become smaller than ε and can be disregarded.

The matrices Ũ and Ṽ are constructed as

Ũ = Ũ1 · Ũ2 · Ũ3 · . . . · Ũn−1 (15.153)

and similarly Ṽ where Ṽi and Ũi are matrices of simple rotations as given in eq.(15.132). Both
Ṽ and Ũ are products of Givens rotations and thus perform orthogonal transforms.

Single shifted QR step. The left multiplication of B(k) by ŨH
i replaces two rows of B(k)

by their linear combinations. The rest of B(k) is unaffected. Right multiplication of B(k) by Ṽi

similarly changes only two columns of B(k).

A matrix Ṽ1 is chosen the way that

B
(k)
1 = B

(k)
0 · Ṽ1 (15.154)

is a QR transform with a shift. Note that multiplying B(k) by Ṽ1 gives rise to a non-zero element
which is below the main diagonal.

B
(k)
0 · Ṽ1 =











× × 0 0 0 0

⊗ × × 0 0 0

0 0 × × 0 0
0 0 0 × × 0
0 0 0 0 × ×
0 0 0 0 0 ×











(15.155)

A new rotation angle is then chosen so that multiplication by ŨH
1 gets rid of that element. But

this will create a non-zero element which is right beside the super-diagonal.

ŨH
1 ·B

(k)
1 =











× × ⊗ 0 0 0

0 × × 0 0 0
0 0 × × 0 0
0 0 0 × × 0
0 0 0 0 × ×
0 0 0 0 0 ×











(15.156)
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Then Ṽ2 is made to make it disappear, but this leads to another non-zero element below the
diagonal, etc.

B
(k)
2 · Ṽ2 =











× × 0 0 0 0
0 × × 0 0 0

0 ⊗ × × 0 0

0 0 0 × × 0
0 0 0 0 × ×
0 0 0 0 0 ×











(15.157)

In the end, the matrix ŨHBṼ becomes bidiagonal again. However, because of a special choice
of Ṽ1 (QR algorithm), its non-diagonal elements are smaller than those of B.

Please note that each of the transforms must also be applied to the unfactored UH
B and VB

matrices which turns them successively into UH and V

Computation of the Wilkinson shift. For a single QR step the computation of the eigen-
value µ of the trailing 2-by-2 submatrix of Tn = BT

n ·Bn that is closer to the t22 matrix element
is required.

Tn =

[
t11 t12
t21 t22

]

= BT
n ·Bn =

[
δn−1 βn−1 0
0 δn βn

]

·





δn−1 0
βn−1 δn
0 βn



 (15.158)

=

[
β2
n−1 + δ2n−1 δn ·βn−1

δn ·βn−1 β2
n + δ2n

]

(15.159)

The required eigenvalue is called Wilkinson shift, see eq.(15.140) for details. The sign for the
eigenvalue is chosen such that it is closer to t22.

µ = t22 + d− sign(d) ·
√

d2 + t212 (15.160)

= t22 + d− t12 · sign
(

d

t12

)

·

√
(

d

t12

)2

+ 1 (15.161)

= t22 −
t212

d+ t12 · sign
(

d

t12

)

·
√
(

d

t12

)2

+ 1

(15.162)

whereas

d =
t11 − t22

2
(15.163)

The Givens rotation Ṽ1 is chosen such that

[
c1 s1
−s1 c1

]T

·
[
(β2

1 − µ)/β1

δ2

]

=

[
×
0

]

(15.164)

The special choice of this first rotation in the single QR step ensures that the super-diagonal
matrix entries get smaller. Typically, after a few of these QR steps, the super-diagonal entry δn
becomes negligible.
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Zeros on the diagonal or super-diagonal. The QR iteration described above claims to hold
if the underlying bidiagonal matrix is unreduced, i.e. has no zeros neither on the diagonal nor
on the super-diagonal.

When there is a zero along the diagonal, then premultiplication by a sequence of Givens trans-
formations can zero the right-hand super-diagonal entry as well. The inverse rotations must be
applied to the UH

B matrix.

B =











× × 0 0 0 0
0 × × 0 0 0
0 0 0 × 0 0
0 0 0 × × 0
0 0 0 0 × ×
0 0 0 0 0 ×











→











× × 0 0 0 0
0 × × 0 0 0
0 0 0 0 ⊗ 0
0 0 0 × × 0
0 0 0 0 × ×
0 0 0 0 0 ×











→











× × 0 0 0 0
0 × × 0 0 0
0 0 0 0 0 ⊗
0 0 0 × × 0
0 0 0 0 × ×
0 0 0 0 0 ×











→











× × 0 0 0 0
0 × × 0 0 0
0 0 0 0 0 0
0 0 0 × × 0
0 0 0 0 × ×
0 0 0 0 0 ×











Thus the problem can be decoupled into two smaller matrices B1 and B2. The diagonal matrix
B3 is successively getting larger for each super-diagonal entry being neglected after the QR
iterations. 



B1 0 0
0 B2 0
0 0 B3



 (15.165)

Matrix B2 has non-zero super-diagonal entries. If there is any zero diagonal entry in B2, then the
super-diagonal entry can be annihilated as just described. Otherwise the QR iteration algorithm
can be applied to B2.

When there are only B3 matrix entries left (diagonal entries only) the algorithm is finished, then
the B matrix has been transformed into the singular value matrix Σ.

Step 4: Solving the equation system

It is straight-forward to solve a given equation system once having the singular value decompo-
sition computed.

A ·x = z (15.166)

UΣV H ·x = z (15.167)

ΣV H ·x = UH · z (15.168)

V H ·x = Σ−1UH · z (15.169)

x = V Σ−1UH · z (15.170)
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The inverse of the diagonal matrix Σ yields

Σ−1 =








1/σ1 0 · · · 0
0 1/σ2 · · · 0
...

...
. . .

...
0 0 · · · 1/σn








(15.171)

With vi being the i-th row of the matrix V , ui the i-th column of the matrix U and σi the i-th
singular value eq. (15.170) can be rewritten to

x =

n∑

i=1

uH
i · z
σi
· vi (15.172)

It must be mentioned that very small singular values σi corrupt the complete result. Such
values indicate (nearly) singular (ill-conditioned) matrices A. In such cases, the solution vector
x obtained by zeroing the small σi’s and then using equation (15.170) is better than direct-
method solutions (such as LU decomposition or Gaussian elimination) and the SVD solution
where the small σi’s are left non-zero. It may seem paradoxical that this can be so, since zeroing
a singular value corresponds to throwing away one linear combination of the set of equations
that is going to be solved. The resolution of the paradox is that a combination of equations
that is so corrupted by roundoff error is thrown away precisely as to be at best useless; usually
it is worse than useless since it ”pulls” the solution vector way off towards infinity along some
direction that is almost a nullspace vector.

15.2.7 Jacobi method

This method quite simply involves rearranging each equation to make each variable a function
of the other variables. Then make an initial guess for each solution and iterate. For this method
it is necessary to ensure that all the diagonal matrix elements aii are non-zero. This is given
for the nodal analysis and almostly given for the modified nodal analysis. If the linear equation
system is solvable this can always be achieved by rows substitutions.

The algorithm for performing the iteration step k + 1 writes as follows.

x
(k+1)
i =

1

aii



zi −
i−1∑

j=1

aijx
(k)
j −

n∑

j=i+1

aijx
(k)
j



 for i = 1, . . . , n (15.173)

This has to repeated until the new solution vectors x(k+1) deviation from the previous one x(k)

is sufficiently small.

The initial guess has no effect on whether the iterative method converges or not, but with a good
initial guess (as possibly given in consecutive Newton-Raphson iterations) it converges faster (if
it converges). To ensure convergence the condition

n∑

j=1,j 6=i

|aij | ≤ |aii| for i = 1, . . . , n (15.174)

and at least one case
n∑

i=1,i6=j

|aij | ≤ |aii| (15.175)
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must apply. If these conditions are not met, the iterative equations may still converge. If these
conditions are met the iterative equations will definitely converge.

Another simple approach to a convergence criteria for iterative algorithms is the Schmidt and v.
Mises criteria. √

√
√
√

n∑

i=1

n∑

j=1,j 6=i

∣
∣
∣
∣

aij
aii

∣
∣
∣
∣

2

< 1 (15.176)

15.2.8 Gauss-Seidel method

The Gauss-Seidel algorithm is a modification of the Jacobi method. It uses the previously
computed values in the solution vector of the same iteration step. That is why this iterative
method is expected to converge faster than the Jacobi method.

The slightly modified algorithm for performing the k + 1 iteration step writes as follows.

x
(k+1)
i =

1

aii



zi −
i−1∑

j=1

aijx
(k+1)
j −

n∑

j=i+1

aijx
(k)
j



 for i = 1, . . . , n (15.177)

The remarks about the initial guess x(0) as well as the convergence criteria noted in the section
about the Jacobi method apply to the Gauss-Seidel algorithm as well.

15.2.9 A comparison

There are direct and iterative methods (algorithms) for solving linear equation systems. Equation
systems with large and sparse matrices should rather be solved with iterative methods.
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method precision application programming
effort

computing
complexity

notes

Laplace
expansion

numerical
errors

general straight
forward

n! very time
consuming

Gaussian
elimination

numerical
errors

general intermediate n3/3 +
n2/2

Gauss-Jordan numerical
errors

general intermediate n3/3 +
n2 − n/3

computes the
inverse besides

LU
decomposition

numerical
errors

general intermediate n3/3 +
n2 − n/3

useful for
consecutive

solutions

QR
decomposition

good general high 2n3 + 3n3

Singular value
decomposition

good general very high 2n3 + 4n3 ill-conditioned
matrices can be

handled

Jacobi very
good

diagonally
dominant
systems

easy n2 in each
iteration

step

possibly no
convergence

Gauss-Seidel very
good

diagonally
dominant
systems

easy n2 in each
iteration

step

possibly no
convergence

15.3 Polynomial approximations

15.3.1 Cubic splines

15.4 Frequency-Time Domain Transformation

Any signal can completely be described in time or in frequency domain. As both representations
are equivalent, it is possible to transform them into each other. This is done by the so-called
Fourier Transformation and the inverse Fourier Transformation, respectively:

Fourier Transformation: U(jω) =

∞∫

−∞

u(t) · e−jω · t dt (15.178)

inverse Fourier Transformation: u(t) =
1

2π
·

∞∫

−∞

U(jω) · ejω · t dω (15.179)

In digital systems the data u(t) or U(jω), respectively, consists of a finite number N of samples
uk and Un. This leads to the discrete Fourier Transformation (DFT) and its inverse operation
(IDFT):

DFT: Un =

N−1∑

k=0

uk · exp
(

−j ·n2π · k
N

)

(15.180)

IDFT: uk =
1

N
·
N−1∑

n=0

Un · exp
(

j · k 2π ·n
N

)

(15.181)
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The absolute time and frequency values do not appear anymore in the DFT. They depend on
the sample frequency fT and the number of samples N .

∆f =
1

N ·∆t
=

fT
N

(15.182)

Where ∆t is distance between time samples and ∆f distance between frequency samples.

With DFT the N time samples are transformed into N frequency samples. This also holds if the
time data are real numbers, as is always the case in ”real life”: The complex frequency samples
are conjugate complex symmetrical and so equalizing the score:

UN−n = U∗
n (15.183)

That is, knowing the input data has no imaginary part, only half of the Fourier data must be
computed.

15.4.1 Fast Fourier Transformation

As can be seen in equation 15.180 the computing time of the DFT rises with N2. This is really
huge, so it is very important to reduce the time consumption. Using a strongly optimized algo-
rithm, the so-called Fast Fourier Transformation (FFT), the DFT is reduced to an N · log2 N
time rise. The following information stems from [61], where the theoretical background is ex-
plained comprehensively.

The fundamental trick of the FFT is to cut the DFT into two parts, one with data having even
indices and the other with odd indices:

Un =

N−1∑

k=0

uk · exp
(

−j ·n2π · k
N

)

(15.184)

=

N/2−1
∑

k=0

u2k · exp
(

−j ·n2π · 2k
N

)

+

N/2−1
∑

k=0

u2k+1 · exp
(

−j ·n2π · (2k + 1)

N

)

(15.185)

=

N/2−1
∑

k=0

u2k · exp
(

−j ·n2π · k
N/2

)

︸ ︷︷ ︸

Feven

+Wn,N ·
N/2−1
∑

k=0

u2k+1 · exp
(

−j ·n2π · k
N/2

)

︸ ︷︷ ︸

Fodd

(15.186)

with Wn,N = exp
(

2π · j · n
N

)

(so-called ’twiddle factor’) (15.187)

The new formula shows no speed advantages. The important thing is that the even as well as
the odd part each is again a Fourier series. Thus the same procedure can be repeated again and
again until the equation consists of N terms. Then, each term contains only one data uk with
factor e0 = 1. This works if the number of data is a power of two (2, 4, 8, 16, 32, ...). So finally,
the FFT method performs log2 N times the operation

uk1,even +Wn,x ·uk2,odd (15.188)

to get one data of Un. This is called the Danielson-Lanzcos algorithm. The question now arises
which data values of uk needs to be combined according to equation (15.188). The answer is
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quite easy. The data array must be reordered by the bit-reversal method. This means the value
at index k1 is swapped with the value at index k2 where k2 is obtained by mirroring the binary
number k1, i.e. the most significant bit becomes the least significant one and so on. Example for
N = 8:

000 ↔ 000 011 ↔ 110 110 ↔ 011
001 ↔ 100 100 ↔ 001 111 ↔ 111
010 ↔ 010 101 ↔ 101

Having this new indexing, the values to combine according to equation 15.188 are the adjacent
values. So, performing the Danielson-Lanzcos algorithm has now become very easy.

Figure 15.4 illustrates the whole FFT algorithm starting with the input data uk and ending with
one value of the output data Un.
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Figure 15.4: principle of a FFT with data length 8

This scheme alone gives no advantage. But it can compute all output values within, i.e. no
temporary memory is needed and the periodicity of Wn,N is best exploited. To understand this,
let’s have a look on the first Danielson-Lanczos step in figure 15.4. The four multiplications
and additions have to be performed for each output value (here 8 times!). But indeed this
is not true, because Wn,2 is 2-periodical in n and furthermore Wn,2 = −Wn+1,2. So now,
u0 +W0,2 ·u4 replaces the old u0 value and u0 −W0,2 ·u4 replaces the old u4 value. Doing this
for all values, four multiplications and eight additions were performed in order to calculate the
first Danielson-Lanczos step for all (!!!) output values. This goes on, as Wn,4 is 4-periodical in n
and Wn,4 = −Wn+2,4. So this time, two loop iterations (for Wn,4 and for Wn+1,4) are necessary
to compute the current Danielson-Lanczos step for all output values. This concept continues
until the last step.

Finally, a complete FFT source code in C should be presented. The original version was taken
from [61]. It is a radix-2 algorithm, known as the Cooley-Tukey Algorithm. Here, several changes
were made that gain about 10% speed improvement.
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Listing 15.1: 1D-FFT algorithm in C

1 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 // Parameters :
3 // num − number o f complex samples
4 // data [ ] − array con ta i n i n g the data samples , r e a l and imaginary
5 // par t in a l t e r n a t i n g order ( l e n g t h : 2∗num)
6 // i s i g n − i s 1 to c a l c u l a t e FFT and −1 to c a l c u l a t e i n v e r s e FFT
7 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
8
9 #de f i ne SWAP(a , b) { wr = a ; a = b ; b = wr ; }

10
11 void f f t r a d i x 2 ( i n t num, double ∗data , i n t i s i g n )
12 {
13 double wt , theta , wr , wi , wpr , wpi , tempi , tempr ;
14 i n t i , j , m, n ;
15 n = 2∗num;
16 j = 0 ;
17
18 // b i t r e v e r s a l method
19 // 1) index 0 need not to be swapped
20 // −> s t a r t a t i=2
21 // 2) swap scheme i s symmetr ica l
22 // −> swap f i r s t and second h a l f in one i t e r a t i o n
23 f o r ( i =2; i<num; i+=2) {
24 m = num;
25 whi le ( j >= m) { // c a l c u l a t e swap index
26 j −= m;
27 m >>= 1 ;
28 }
29 j += m;
30
31 i f ( j > i ) { // was index a l r eady swapped ?
32 SWAP( data [ j ] , data [ i ] ) ; // swap r e a l par t
33 SWAP( data [ j +1] , data [ i +1 ] ) ; // swap imaginary par t
34
35 i f ( j < num) { // swap second h a l f ?
36 SWAP ( data [ n−j −2] , data [ n−i −2 ] ) ; // swap r e a l par t
37 SWAP ( data [ n−j −1] , data [ n−i −1 ] ) ; // swap imaginary par t
38 }
39 }
40 }
41
42 // Danielson−Lanzcos a l g o r i t hm
43 i n t mmax, i s t e p ;
44 mmax = 2 ;
45 whi le (n > mmax) { // each Danielson−Lanzcos s t e p
46 i s t e p = mmax << 1 ;
47 theta = i s i g n ∗ ( 2 . 0 ∗ PI / mmax ) ;
48 wpr = cos ( theta ) ;
49 wpi = s in ( theta ) ;
50 wr = 1 . 0 ;
51 wi = 0 . 0 ;
52 f o r (m=1; m<mmax; m+=2) {
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53 f o r ( i=m; i<=n ; i+=i s t e p ) {
54 j = i+mmax;
55 tempr = wr∗data [ j −1] + wi∗data [ j ] ;
56 tempi = wr∗data [ j ] − wi∗data [ j −1] ;
57 data [ j −1] = data [ i −1] − tempr ;
58 data [ j ] = data [ i ] − tempi ;
59 data [ i −1] += tempr ;
60 data [ i ] += tempi ;
61 }
62 wt = wr ;
63 wr = wt∗wpr − wi∗wpi ;
64 wi = wi∗wpr + wt∗wpi ;
65 }
66 mmax = i s t e p ;
67 }
68
69 i f ( i s t e p == −1) // perform i n v e r s e FFT ?
70 f o r ( i =0; i<num; i++)
71 data [ i ] /= num; // norma l i ze r e s u l t
72 }

There are many other FFT algorithms mainly aiming at higher speed (radix-8 FFT, split-radix
FFT, Winograd FFT). These algorithms are much more complex, but on modern processors
with numerical co-processors they gain no or hardly no speed advantage, because the reduced
FLOPS are equalled by the far more complex indexing.

15.4.2 Real-Valued FFT

All physical systems are real-valued in time domain. As already mentioned above, this fact leads
to a symmetry in frequency domain, which can be exploited to save 50% memory usage and
about 30% computation time. Rewriting the C listing from above to a real-valued FFT routine
creates the following function. As this scheme is not symmetric anymore, an extra procedure for
the inverse transformation is needed. It is also depicted below.

Listing 15.2: real-valued FFT algorithm in C

1 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 // Parameters :
3 // num − number o f rea l−va lued samples
4 // data [ ] − array con ta i n i n g the data samples ( l e n g t h : num)
5 //
6 // Output :
7 // data [ ] − r (0) , r (1) , i (1 ) , . . . . , r (N/2−1) , i (N/2−1) , r (N/2)
8 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
9

10 #de f i ne SWAP(a , b) { wr = a ; a = b ; b = wr ; }
11
12 void r e a l f f t r a d i x 2 ( i n t num, double ∗data )
13 {
14 i n t i , j , k , l , n1 = num >> 1 , n2 = 1 ;
15 double t1 , t2 , t3 , wr , wi , wpr , wpi ;
16
17 // b i t r e v e r s a l method
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18 // 1) index 0 need not to be swapped
19 // −> s t a r t a t i=1
20 // 2) swap scheme i s symmetr ica l
21 // −> swap f i r s t and second h a l f in one i t e r a t i o n
22 j = 0 ;
23 f o r ( i =1; i<n1 ; i++) {
24 k = n1 ;
25 whi le ( j >= k) { // c a l c u l a t e swap index
26 j −= k ;
27 k >>= 1 ;
28 }
29 j += k ;
30
31 i f ( j > i ) { // was index a l r eady swapped ?
32 SWAP( data [ j ] , data [ i ] ) ;
33
34 i f ( j < n1 ) // swap second h a l f ?
35 SWAP ( data [num−j −1] , data [ num−i −1 ] ) ;
36 }
37 }
38
39 // l e n g t h two b u t t e r f l i e s
40 f o r ( i =0; i<num; i+=2) {
41 t1 = data [ i +1] ;
42 data [ i +1] = data [ i ] − t1 ;
43 data [ i ] += t1 ;
44 }
45
46 whi le ( n1 < num) {
47 n2 <<= 1 ; // h a l f a b u t t e r f l y
48 n1 = n2 << 1 ; // l e n g t h o f a b u t t e r f l y
49
50 f o r ( i =0; i<num; i+=n1) {
51 t1 = data [ i+n2 ] ;
52 data [ i+n2 ] = −data [ i+n1−1] ;
53 data [ i+n1−1] = data [ i ] − t1 ;
54 data [ i ] += t1 ;
55 }
56
57 t1 = 2 .0∗M PI / ( ( double ) n1 ) ;
58 wpr = cos ( t1 ) ; // r e a l par t o f tw i d d l e f a c t o r
59 wpi = s in ( t1 ) ; // imaginary par t o f tw i d d l e f a c t o r
60 wr = 1 . 0 ; // s t a r t o f tw i d d l e f a c t o r
61 wi = 0 . 0 ;
62
63 f o r ( j =3; j<n2 ; j+=2) { // a l l complex l i n e s o f a b u t t e r f l y
64 t1 = wr ;
65 wr = t1 ∗wpr − wi∗wpi ; // c a l c u l a t e nex t tw i d d l e f a c t o r
66 wi = wi∗wpr + t1 ∗wpi ;
67
68 f o r ( i =0; i<num; i+=n1) { // through a l l b u t t e r f l i e s
69 k = i + j − 2 ;
70 l = i + n1 − j ;
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71 t1 = data [ l ]∗wr + data [ l +1]∗wi ;
72 t3 = data [ k+1] ;
73 t2 = data [ l +1]∗wr − data [ l ]∗wi ;
74 data [ l ] = data [ k ] ;
75
76 i f ( ( i & n1 ) != 0) { // index swap ?
77 t1 = −t1 ;
78 t3 = −t3 ;
79 }
80
81 data [ k ] += t1 ;
82 data [ k+1] = t2 + t3 ;
83 data [ l ] −= t1 ;
84 data [ l +1] = t2 − t3 ;
85 }
86 }
87 }
88 }

Listing 15.3: real-valued inverse FFT algorithm in C

1 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 // Parameters :
3 // num − count o f numbers in data
4 // data [ ] − r (0) , r (1) , i (1 ) , . . . . , r (N/2−1) , i (N/2−1) , r (N/2)
5 //
6 // Output :
7 // data [ ] − array con ta i n i n g the data samples ( l e n g t h : num)
8 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
9

10 #de f i ne SWAP(a , b) { wr = a ; a = b ; b = wr ; }
11
12 void r e a l i f f t o r d e r s p e e d ( i n t num, double ∗data )
13 {
14 i n t i , j , k , l , n1 , n2 = num;
15 double t1 , t2 , t3 , wr , wi , wpr , wpi ;
16
17 whi le ( n2 > 2) {
18 n1 = n2 ; // l e n g t h o f a b u t t e r f l y
19 n2 >>= 1 ; // h a l f a b u t t e r f l y
20
21 f o r ( i =0; i<num; i+=n1) { // through a l l b u t t e r f l i e s
22 t1 = data [ i+n1−1] ;
23 data [ i+n1−1] = −2.0 ∗ data [ i+n2 ] ;
24 data [ i+n2−1] ∗= 2 . 0 ;
25 data [ i+n2 ] = data [ i ] − t1 ;
26 data [ i ] += t1 ;
27 }
28
29 t1 = 2 .0∗M PI / ( ( double ) n1 ) ;
30 wpr = cos ( t1 ) ; // r e a l par t o f tw i d d l e f a c t o r
31 wpi = s in ( t1 ) ; // imaginary par t o f tw i d d l e f a c t o r
32 wr = 1 . 0 ; // s t a r t o f tw i d d l e f a c t o r
33 wi = 0 . 0 ;
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34
35 f o r ( j =3; j<n2 ; j+=2) { // a l l complex l i n e s o f a b u t t e r f l y
36 t1 = wr ;
37 wr = t1 ∗wpr + wi∗wpi ; // c a l c u l a t e nex t tw i d d l e f a c t o r
38 wi = wi∗wpr − t1 ∗wpi ;
39
40 f o r ( i =0; i<num; i+=n1) { // through a l l b u t t e r f l i e s
41 k = i + j − 2 ;
42 l = i + n1 − j ;
43 t1 = data [ l ] − data [ k ] ;
44 t2 = data [ l +1] + data [ k+1] ;
45 t3 = data [ k+1] − data [ l +1] ;
46 data [ k ] += data [ l ] ;
47
48 i f ( ( i & n1 ) != 0) {
49 t1 = −t1 ;
50 t3 = −t3 ;
51 }
52
53 data [ k+1] = t3 ;
54 data [ l ] = t2 ∗wi − t1 ∗wr ;
55 data [ l +1] = t2 ∗wr + t1 ∗wi ;
56 }
57 }
58 }
59
60 // l e n g t h two b u t t e r f l i e s
61 f o r ( i =0; i<num; i+=2) {
62 t1 = data [ i +1] ;
63 data [ i +1] = ( data [ i ] − t1 ) / num;
64 data [ i ] = ( data [ i ] + t1 ) / num;
65 }
66
67 // b i t r e v e r s a l method
68 // 1) index 0 need not to be swapped
69 // −> s t a r t a t i=1
70 // 2) swap scheme i s symmetr ica l
71 // −> swap f i r s t and second h a l f in one i t e r a t i o n
72 j = 0 ;
73 n1 = num >> 1 ;
74 f o r ( i =1; i<n1 ; i++) {
75 k = n1 ;
76 whi le ( j >= k) { // c a l c u l a t e swap index
77 j −= k ;
78 k >>= 1 ;
79 }
80 j += k ;
81
82 i f ( j > i ) { // was index a l r eady swapped ?
83 SWAP( data [ j ] , data [ i ] ) ;
84
85 i f ( j < n1 ) // swap second h a l f ?
86 SWAP ( data [num−j −1] , data [ num−i −1 ] ) ;
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87 }
88 }
89 }

15.4.3 More-Dimensional FFT

A standard Fourier Transformation is not useful in harmonic balance methods, because with
multi-tone excitation many mixing products appear. The best way to cope with this problem is
to use multi-dimensional FFT.

Fourier Transformations in more than one dimension soon become very time consuming. Using
FFT mechanisms is therefore mandatory. A more-dimensional Fourier Transformation consists
of many one-dimensional Fourier Transformations (1D-FFT). First, 1D-FFTs are performed for
the data of the first dimension at every index of the second dimension. The results are used
as input data for the second dimension that is performed the same way with respect to the
third dimension. This procedure is continued until all dimensions are calculated. The following
equations shows this for two dimensions.

Un1,n2 =

N2−1∑

k2=0

N1−1∑

k1=0

uk1,k2 · exp
(

−j ·n1
2π · k1
N1

)

· exp
(

−j ·n2
2π · k2
N2

)

(15.189)

=

N2−1∑

k2=0

exp

(

−j ·n2
2π · k2
N2

)

·
N1−1∑

k1=0

uk1,k2 · exp
(

−j ·n1
2π · k1
N1

)

︸ ︷︷ ︸

1D-FFT

(15.190)

Finally, a complete n-dimensional FFT source code should be presented. It was taken from [61]
and somewhat speed improved.

Parameters:
ndim - number of dimensions
num[] - array containing the number of complex samples for every dimension
data[] - array containing the data samples,

real and imaginary part in alternating order (length: 2*sum of num[]),
going through the array, the first dimension changes least rapidly !
all subscripts range from 1 to maximum value !

isign - is 1 to calculate FFT and -1 to calculate inverse FFT

Listing 15.4: multidimensional FFT algorithm in C

1 i n t idim , i1 , i2 , i3 , i2rev , i3rev , ip1 , ip2 , ip3 , i fp1 , i f p 2 ;
2 i n t i b i t , k1 , k2 , n , nprev , nrem , ntot ;
3 double tempi , tempr , wt , theta , wr , wi , wpi , wpr ;
4
5 ntot = 1 ;
6 f o r ( idim=0; idim<ndim ; idim++) // compute t o t a l number o f complex va l u e s
7 ntot ∗= num[ idim ] ;
8
9 nprev = 1 ;
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10 f o r ( idim=ndim−1; idim>=0; idim−−) { // main l oop over the dimensions
11 n = num[ idim ] ;
12 nrem = ntot /(n∗nprev ) ;
13 ip1 = nprev << 1 ;
14 ip2 = ip1 ∗n ;
15 ip3 = ip2 ∗nrem ;
16 i 2 r ev = 1 ;
17
18 f o r ( i 2 =1; i2<=ip2 ; i 2+=ip1 ) { // b i t−r e v e r s a l method
19 i f ( i 2 < i 2 r ev ) {
20 f o r ( i 1=i2 ; i1<=i2+ip1 −2; i 1+=2) {
21 f o r ( i 3=i1 ; i3<=ip3 ; i 3+=ip2 ) {
22 i 3 r ev = i2 r ev+i3−i 2 ;
23 SWAP( data [ i3 −1] , data [ i3rev −1 ] ) ;
24 SWAP( data [ i 3 ] , data [ i 3 r ev ] ) ;
25 }
26 }
27 }
28 i b i t=ip2 >> 1 ;
29 whi le ( i b i t >= ip1 && i2 r ev > i b i t ) {
30 i 2 r ev −= i b i t ;
31 i b i t >>= 1 ;
32 }
33 i 2 r ev += i b i t ;
34 }
35
36 i f p 1 = ip1 ;
37 whi le ( i f p 1 < ip2 ) { // Danielson−Lanzcos a l g o r i t hm
38 i f p 2 = i f p 1 << 1 ;
39 theta = i s i g n ∗2∗ pi /( i f p 2 / ip1 ) ;
40 wpr = cos ( theta ) ;
41 wpi = s in ( theta ) ;
42 wr = 1 . 0 ; wi = 0 . 0 ;
43 f o r ( i 3 =1; i3<=i f p 1 ; i 3+=ip1 ) {
44 f o r ( i 1=i3 ; i1<=i3+ip1 −2; i 1+=2) {
45 f o r ( i 2=i1 ; i2<=ip3 ; i 2+=i f p 2 ) {
46 k1 = i2 ;
47 k2 = k1+i f p 1 ;
48 tempr = wr∗data [ k2−1] − wi∗data [ k2 ] ;
49 tempi = wr∗data [ k2 ] + wi∗data [ k2−1] ;
50 data [ k2−1] = data [ k1−1] − tempr ;
51 data [ k2 ] = data [ k1 ] − tempi ;
52 data [ k1−1] += tempr ; data [ k1 ] += tempi ;
53 }
54 }
55 wt = wr ;
56 wr = wt∗wpr − wi∗wpi ;
57 wi = wi∗wpr + wt∗wpi ;
58 }
59 i f p 1 = i f p 2 ;
60 }
61 nprev ∗= n ;
62 }
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Appendix A

Qucs file formats

Qucs uses plain-text (ASCII) files as its input and transfer format for netlists and data. This
appendix explains the file formats by describing the grammars of the languages used. The files
are generally line-oriented but arbitrary whitespace between the token is allowed. You can also
use the backslash (\) to continue a line on the next line. This works almost everywhere but in
comment lines.

The grammars are presented using a version of the Extended Backus-Naur Form (EBNF) which
works as follows:

A→ B Nonterminal A produces sentential form B.
B|C Produces B or C.
{A} Arbitrary repetition of form A. No repetition is allowed as well (“Kleene operator”).
[ A ] Form A is optional.
(A) Grouping, stands for A itself.

Nonterminal symbols are set in normal font, terminal symbols are in bold font. Terminal symbols
in single quotes are literally found in the input while the other terminal symbols are compositions.
See below for definition of composed terminal symbols.
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A.1 Qucs netlist grammar

Syntactic Structure

Input → { InputLine }
InputLine → DefinitionLine

| SubcircuitBody
| EquationLine
| ActionLine
| [ ‘#’ ( Entire line is comment ) ] Eol

A netlist is read in a line-based fashion. There are several types of lines.

Definition

DefinitionLine → Identifier ‘:’ Identifier { Identifier } PairList Eol

Components of the circuit are defined by providing its nodes and parameters for a property.

Subcircuits

SubcircuitBody → DefBegin { DefBodyLine } DefEnd
DefBegin → ‘.’ ‘Def’ ‘:’ Identifier { Identifier } Eol
DefBodyLine → DefinitionLine

| SubcircuitBody
| Eol

DefEnd → ‘.’ ‘Def’ ‘:’ ‘End’ Eol

Subcircuits are recursively defined by blocks of component definitions.

Action

ActionLine → ‘.’ Identifier ‘:’ Identifier PairList Eol

Defines what to simulate with the circuit.

Equation

EquationLine → ‘Eqn’ ‘:’ Identifier Equation { Equation } Eol
Equation → Identifier ‘=’ ‘“’ Expression ‘“’

Named equation definitions consist of a list of assignments with expressions on their right hand
side.
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Declarations

PairList → { Identifier ‘=’ Value }
Value → PropertyValue

| ‘“’ PropertyValue ‘“’
PropertyValue → Identifier

| PropertyReal
| ‘[’ PropertyReal [ { ‘;’ PropertyReal } ] ‘]’

PropertyReal → Real [ Scale [ Unit ] ]

The above constructs are used to define properties (parameters) of components and actions.

Mathematical Expressions

Expression → Constant
| Reference
| Application
| ‘(’ Expression ‘)’

Constant → Real
| Imag
| Character
| String
| Range

Range → [ Real ] ‘:’ [ Real ]
Reference → Identifier
Application → Identifier ‘(’ Expression [ { ‘,’ Expression } ] ‘)’

| Reference ‘[’ Expression [ { ‘,’ Expression } ] ‘]’
| ( ‘+’ | ‘-’ ) Expression
| Expression ( ‘+’ |‘-’ |‘*’ |‘/’ |‘%’ |‘ˆ’ ) Expression

Operator precedence works as expected in common mathematical expressions.

Lexical structure

Identifier → Alpha { AlphaNum } { ‘.’ Alpha { AlphaNum } }
Alpha → ‘a’ | . . . | ‘z’ | ‘A’ | . . . | ‘Z’|‘ ’
AlphaNum → ‘a’ | . . . | ‘z’ | ‘A’ | . . . | ‘Z’| ‘0’ . . . ‘9’ | ‘ ’
Real → [ ‘+’ | ‘-’ ] [ Num ] ‘.’ Num [ ( ‘e’ |‘E’ ) [ ‘+’ | ‘-’ ] Num ]
Num → Digit { Digit }
Digit → ‘0’ . . . ‘9’
Imag → [ ‘+’ | ‘-’ ] ( ‘i’ |‘j’ ) [ Num ] ‘.’ Num [ ( ‘e’ |‘E’ ) [ ‘+’ | ‘-’ ] Num ]
Character → ‘’’ ( Any character but newline and ‘’’ ) ‘’’
String → ‘’’ { ( Any character but newline and ‘’’ ) } ‘’’
Scale → ( ‘dBm’ | ‘dB’ | ‘T’ | ‘G’ | ‘M’ |‘k’ | ‘m’ | ‘u’ | ‘n’ | ‘p’ |‘f’ | ‘a’ )
Unit → ( ‘Ohm’ | ‘S’ | ‘s’ | ‘K’ | ‘H’ | ‘F’ | ‘Hz’ | ‘V’ | ‘A’ | ‘W’ | ‘m’ )
Eol → [ ‘\r’ ] ‘\n’
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This defines the composed terminal symbols.
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A.2 Qucs dataset grammar

Syntactic structure

Input → VersionLine { Variable }
VersionLine → ‘<Qucs Dataset ’ Num ‘.’ Num ‘.’ Num ‘>’ Eol

The file consists of a header line indicating the software version and a number of variables.

Data

Variable → ‘<dep’ Identifier { Identifier } ‘>’ { Float } ‘</dep>’
| ‘<indep’ Identifier Integer ‘>’ { Float } ‘</indep>’
| ‘#’ ( Entire line is comment ) Eol

The Float values itself may be scattered over several lines. An independent variable denotes
a list of real or complex values. The dependent variables denote lists of real or complex val-
ues depending on independent variables, i.e. a function of some other variable, a f(x, . . .) in
mathematical terms.

Lexical structure

Float → Real
| Imag
| Complex

Real → [ ‘+’ | ‘-’ ] [ Num ] ‘.’ Num [ ( ‘e’ | ‘E’ ) [ ‘+’ | ‘-’ ] Num ]
Imag → [ ‘+’ | ‘-’ ] ( ‘i’ | ‘j’ ) [ Num ] ‘.’ Num [ ( ‘e’ | ‘E’ ) [ ‘+’ | ‘-’ ] Num ]
Complex → Real Imag
Num → Digit { Digit }
Digit → ‘0’ . . . ‘9’
Integer → [ ‘+’ | ‘-’ ] Num
Eol → [ ‘\r’ ] ‘\n’
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